Credit Risk Analysis for SMEs Using Graph Neural Networks in Supply Chain
- URL: http://arxiv.org/abs/2507.07854v2
- Date: Sun, 20 Jul 2025 15:25:17 GMT
- Title: Credit Risk Analysis for SMEs Using Graph Neural Networks in Supply Chain
- Authors: Zizhou Zhang, Qinyan Shen, Zhuohuan Hu, Qianying Liu, Huijie Shen,
- Abstract summary: This paper introduces a Graph Neural Network (GNN)-based framework to map spatial dependencies and predict loan default risks.<n>Tests on real-world datasets from Discover and Ant Credit show the GNN surpasses traditional and other GNN baselines.<n>It also helps regulators model supply chain disruption impacts on banks, accurately forecasting loan defaults from material shortages, and offers Federal Reserve stress testers key data for CCAR risk buffers.
- Score: 2.060688901523233
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Small and Medium-sized Enterprises (SMEs) are vital to the modern economy, yet their credit risk analysis often struggles with scarce data, especially for online lenders lacking direct credit records. This paper introduces a Graph Neural Network (GNN)-based framework, leveraging SME interactions from transaction and social data to map spatial dependencies and predict loan default risks. Tests on real-world datasets from Discover and Ant Credit (23.4M nodes for supply chain analysis, 8.6M for default prediction) show the GNN surpasses traditional and other GNN baselines, with AUCs of 0.995 and 0.701 for supply chain mining and default prediction, respectively. It also helps regulators model supply chain disruption impacts on banks, accurately forecasting loan defaults from material shortages, and offers Federal Reserve stress testers key data for CCAR risk buffers. This approach provides a scalable, effective tool for assessing SME credit risk.
Related papers
- Prediction of Bank Credit Ratings using Heterogeneous Topological Graph Neural Networks [2.7613060052810914]
This research utilizes persistent homology to construct a network that captures relationships among banks and combines this with a traditional lending network to create a heterogeneous network.<n> Experiments on a global, real-world dataset validate the effectiveness of HTGNN.<n>This research has implications for investors and regulatory bodies in enhancing proactive risk mitigation and the implementation of effective market interventions.
arXiv Detail & Related papers (2025-05-17T13:49:25Z) - Applying Hybrid Graph Neural Networks to Strengthen Credit Risk Analysis [4.457653449326353]
This paper presents a novel approach to credit risk prediction by employing Graph Convolutional Neural Networks (GCNNs)
The proposed method addresses the challenges faced by traditional credit risk assessment models, particularly in handling imbalanced datasets.
The study demonstrates the potential of GCNNs in improving the accuracy of credit risk prediction, offering a robust solution for financial institutions.
arXiv Detail & Related papers (2024-10-05T20:49:05Z) - Graph Dimension Attention Networks for Enterprise Credit Assessment [40.87056211723355]
We propose a novel architecture named Graph Dimension Attention Network (GDAN)
GDAN incorporates a dimension-level attention mechanism to capture fine-grained risk-related characteristics.
We explore the interpretability of the GNN-based method in financial scenarios and propose a data-centric explainer for GDAN, called GDAN-DistShift.
arXiv Detail & Related papers (2024-07-16T11:24:28Z) - Research on Credit Risk Early Warning Model of Commercial Banks Based on Neural Network Algorithm [12.315852697312195]
This study harnesses advanced neural network techniques, notably the Backpropagation (BP) neural network, to pioneer a novel model for preempting credit risk in commercial banks.
Research findings evinced that this model efficaciously enhances the foresight and precision of credit risk management.
arXiv Detail & Related papers (2024-05-17T13:18:46Z) - Uncertainty Quantification over Graph with Conformalized Graph Neural
Networks [52.20904874696597]
Graph Neural Networks (GNNs) are powerful machine learning prediction models on graph-structured data.
GNNs lack rigorous uncertainty estimates, limiting their reliable deployment in settings where the cost of errors is significant.
We propose conformalized GNN (CF-GNN), extending conformal prediction (CP) to graph-based models for guaranteed uncertainty estimates.
arXiv Detail & Related papers (2023-05-23T21:38:23Z) - Company-as-Tribe: Company Financial Risk Assessment on Tribe-Style Graph
with Hierarchical Graph Neural Networks [62.94317686301643]
Company financial risk is ubiquitous and early risk assessment for listed companies can avoid considerable losses.
Traditional methods mainly focus on the financial statements of companies and lack the complex relationships among them.
We propose a novel Hierarchical Graph Neural Network (TH-GNN) for Tribe-style graphs via two levels, with the first level to encode the structure pattern of the tribes with contrastive learning, and the second level to diffuse information based on the inter-tribe relations.
arXiv Detail & Related papers (2023-01-31T09:17:13Z) - Explanations of Machine Learning predictions: a mandatory step for its
application to Operational Processes [61.20223338508952]
Credit Risk Modelling plays a paramount role.
Recent machine and deep learning techniques have been applied to the task.
We suggest to use LIME technique to tackle the explainability problem in this field.
arXiv Detail & Related papers (2020-12-30T10:27:59Z) - Every Corporation Owns Its Structure: Corporate Credit Ratings via Graph
Neural Networks [2.7910505923792637]
We propose a novel model, Corporate Credit Rating via Graph Neural Networks, CCR-GNN for brevity.
We firstly construct individual graphs for each corporation based on self-outer product then use GNN to model the feature interaction explicitly.
Experiments conducted on the Chinese public-listed corporate rating dataset, prove that CCR-GNN outperforms the state-of-the-art methods consistently.
arXiv Detail & Related papers (2020-11-27T02:57:14Z) - Super-App Behavioral Patterns in Credit Risk Models: Financial,
Statistical and Regulatory Implications [110.54266632357673]
We present the impact of alternative data that originates from an app-based marketplace, in contrast to traditional bureau data, upon credit scoring models.
Our results, validated across two countries, show that these new sources of data are particularly useful for predicting financial behavior in low-wealth and young individuals.
arXiv Detail & Related papers (2020-05-09T01:32:03Z) - Neural Networks and Value at Risk [59.85784504799224]
We perform Monte-Carlo simulations of asset returns for Value at Risk threshold estimation.
Using equity markets and long term bonds as test assets, we investigate neural networks.
We find our networks when fed with substantially less data to perform significantly worse.
arXiv Detail & Related papers (2020-05-04T17:41:59Z) - Privacy-preserving Traffic Flow Prediction: A Federated Learning
Approach [61.64006416975458]
We propose a privacy-preserving machine learning technique named Federated Learning-based Gated Recurrent Unit neural network algorithm (FedGRU) for traffic flow prediction.
FedGRU differs from current centralized learning methods and updates universal learning models through a secure parameter aggregation mechanism.
It is shown that FedGRU's prediction accuracy is 90.96% higher than the advanced deep learning models.
arXiv Detail & Related papers (2020-03-19T13:07:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.