論文の概要: Uncertainty-Aware Multi-view Arrhythmia Classification from ECG
- arxiv url: http://arxiv.org/abs/2506.06342v1
- Date: Sun, 01 Jun 2025 08:44:35 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-10 16:33:10.198481
- Title: Uncertainty-Aware Multi-view Arrhythmia Classification from ECG
- Title(参考訳): 心電図からの不確実性を考慮した多視点不整脈分類
- Authors: Mohd Ashhad, Sana Rahmani, Mohammed Fayiz, Ali Etemad, Javad Hashemi,
- Abstract要約: 本稿では,心電図から不確実性を考慮した不整脈の多視点分類を行うディープニューラルアーキテクチャを提案する。
融合技術を用いて、ECGデータ内のノイズとアーティファクトによって引き起こされる異なるビュー間の衝突を低減する。
- 参考スコア(独自算出の注目度): 18.107540930487176
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a deep neural architecture that performs uncertainty-aware multi-view classification of arrhythmia from ECG. Our method learns two different views (1D and 2D) of single-lead ECG to capture different types of information. We use a fusion technique to reduce the conflict between the different views caused by noise and artifacts in ECG data, thus incorporating uncertainty to obtain stronger final predictions. Our framework contains the following three modules (1) a time-series module to learn the morphological features from ECG; (2) an image-space learning module to learn the spatiotemporal features; and (3) the uncertainty-aware fusion module to fuse the information from the two different views. Experimental results on two real-world datasets demonstrate that our framework not only improves the performance on arrhythmia classification compared to the state-of-the-art but also shows better robustness to noise and artifacts present in ECG.
- Abstract(参考訳): 本稿では,心電図から不確実性を考慮した不整脈の多視点分類を行うディープニューラルアーキテクチャを提案する。
本手法では,1次元と2次元の2種類の単一リードECGのビューを学習し,異なるタイプの情報を取得する。
融合手法を用いて,ECGデータにおけるノイズとアーティファクトの相違を低減し,不確実性を取り入れ,より強力な最終予測を得る。
本フレームワークは,次の3つのモジュールを含む。(1)ECGから形態的特徴を学習する時系列モジュール,(2)時空間の特徴を学習する画像空間学習モジュール,(3)2つの異なる視点から情報を融合する不確実性認識融合モジュール。
2つの実世界のデータセットによる実験結果から、我々のフレームワークは不整脈分類の性能を最先端と比較して改善するだけでなく、ECGに存在するノイズやアーティファクトに対する堅牢性も向上することが示された。
関連論文リスト
- Heartcare Suite: Multi-dimensional Understanding of ECG with Raw Multi-lead Signal Modeling [50.58126509704037]
医療スイート(Heartcare Suite)は、微細心電図(ECG)の理解のためのフレームワークである。
Heartcare-220Kは高品質で構造化され、包括的なマルチモーダルECGデータセットである。
Heartcare-Benchは、ECGシナリオにおける医療マルチモーダル大言語モデル(Med-MLLM)の最適化を導くためのベンチマークである。
論文 参考訳(メタデータ) (2025-06-06T07:56:41Z) - Heart Rate Classification in ECG Signals Using Machine Learning and Deep Learning [0.0]
本研究は心電図信号からの心拍を2つの異なるアプローチで分類する。
従来の機械学習は、手作りの機能と、ECGビートを変換した画像によるディープラーニングを利用している。
SVMやAdaBoostのようなモデルではスコアが大幅に低くなり、このタスクには限定的な適合性を示した。
論文 参考訳(メタデータ) (2025-06-02T05:16:16Z) - ArrhythmiaVision: Resource-Conscious Deep Learning Models with Visual Explanations for ECG Arrhythmia Classification [0.0]
本稿では,エッジデバイス上での効率的なリアルタイム不整脈分類に最適化されたArrhythmiNet V1とV2を提案する。
MobileNetの深い分離可能な畳み込み設計にインスパイアされたこれらのモデルは、それぞれ302.18KBと157.76KBのメモリフットプリントを維持している。
本研究は, 実用, ウェアラブル, 組込みECGモニタリングシステムにおいて, 解釈可能性, 予測精度, 計算効率の両立の可能性を示すものである。
論文 参考訳(メタデータ) (2025-04-30T18:22:45Z) - GEM: Empowering MLLM for Grounded ECG Understanding with Time Series and Images [43.65650710265957]
GEMは,第1回MLLM統合ECG時系列,第12回リードECG画像,地上および臨床のECG解釈のためのテキストである。
GEMは、3つのコアイノベーションを通じて機能的解析、エビデンス駆動推論、および臨床医のような診断プロセスを可能にする。
基礎心電図理解におけるMLLMの能力を評価するために,臨床動機付けのベンチマークであるグラウンドドECGタスクを提案する。
論文 参考訳(メタデータ) (2025-03-08T05:48:53Z) - Self-supervised inter-intra period-aware ECG representation learning for detecting atrial fibrillation [41.82319894067087]
そこで本研究では,周期型ECG表現学習手法を提案する。
心房細動患者の心電図ではRR間隔の不規則性やP波の欠如を考慮し, 経時的および経時的表現のための特定の事前訓練タスクを開発する。
本手法は,発作/持続性心房細動検出のためのBTCHデータセット,textiti., 0.953/0.996におけるAUCの顕著な性能を示す。
論文 参考訳(メタデータ) (2024-10-08T10:03:52Z) - VizECGNet: Visual ECG Image Network for Cardiovascular Diseases Classification with Multi-Modal Training and Knowledge Distillation [0.7405975743268344]
実際には、ECGデータはデジタル化された信号または印刷された画像として格納される。
本稿では,複数の心血管疾患の予後を決定するために,心電図のみを用いたVizECGNetを提案する。
論文 参考訳(メタデータ) (2024-08-06T01:34:43Z) - End-to-End Model-based Deep Learning for Dual-Energy Computed Tomography Material Decomposition [53.14236375171593]
本稿では,定量化のためのエンド・ツー・エンド材料分解(E2E-DEcomp)と呼ばれる深層学習手法を提案する。
AAPMスペクトルCTデータセットにおける直接E2E-DEcomp法の有効性を示す。
論文 参考訳(メタデータ) (2024-06-01T16:20:59Z) - A Two-Stage Generative Model with CycleGAN and Joint Diffusion for
MRI-based Brain Tumor Detection [41.454028276986946]
本稿では,脳腫瘍の検出とセグメンテーションを改善するための2段階生成モデル(TSGM)を提案する。
CycleGANは、未ペアデータに基づいてトレーニングされ、データとして正常な画像から異常な画像を生成する。
VE-JPは、合成対の異常画像をガイドとして使用して、健康な画像の再構成を行う。
論文 参考訳(メタデータ) (2023-11-06T12:58:26Z) - ECG Heartbeat Classification Using Multimodal Fusion [13.524306011331303]
本稿では,心電図の心拍数分類のための2つの計算効率の良いマルチモーダル融合フレームワークを提案する。
MFFでは,CNNの垂直層から特徴を抽出し,それらを融合させてユニークかつ相互依存的な情報を得た。
不整脈では99.7%,MIでは99.2%の分類が得られた。
論文 参考訳(メタデータ) (2021-07-21T03:48:35Z) - ECG Heart-beat Classification Using Multimodal Image Fusion [13.524306011331303]
我々は心電図の心拍分類のための新しい画像融合モデル(IFM)を提案する。
まず、まず、Gramian Angular Field(GAF)、Recurrence Plot(RP)、Markov Transition Field(MTF)を用いて、心電図の心拍を3つの異なる画像に変換する。
論文 参考訳(メタデータ) (2021-05-28T01:31:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。