Scoring the Unscorables: Cyber Risk Assessment Beyond Internet Scans
- URL: http://arxiv.org/abs/2506.06604v1
- Date: Sat, 07 Jun 2025 00:44:09 GMT
- Title: Scoring the Unscorables: Cyber Risk Assessment Beyond Internet Scans
- Authors: Armin Sarabi, Manish Karir, Mingyan Liu,
- Abstract summary: We show that it is feasible to build a highly accurate cyber risk assessment model using public and readily available technology signatures.<n>Our study shows that there is a strong relationship between these technology signatures and an organization's cybersecurity posture.
- Score: 7.449694025927039
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper we present a study on using novel data types to perform cyber risk quantification by estimating the likelihood of a data breach. We demonstrate that it is feasible to build a highly accurate cyber risk assessment model using public and readily available technology signatures obtained from crawling an organization's website. This approach overcomes the limitations of previous similar approaches that relied on large-scale IP address based scanning data, which suffers from incomplete/missing IP address mappings as well as the lack of such data for large numbers of small and medium-sized organizations (SMEs). In comparison to scan data, technology digital signature data is more readily available for millions of SMEs. Our study shows that there is a strong relationship between these technology signatures and an organization's cybersecurity posture. In cross-validating our model using different cyber incident datasets, we also highlight the key differences between ransomware attack victims and the larger population of cyber incident and data breach victims.
Related papers
- Entity-Specific Cyber Risk Assessment using InsurTech Empowered Risk Factors [12.0472507787498]
We develop a novel InsurTech framework that enriches cyber incident data with entity-specific attributes.<n>We apply multiple interpretable ML techniques to identify and cross-validate potential risk factors.<n>The framework generates transparent, entity-specific cyber risk profiles, supporting customized underwriting and proactive cyber risk mitigation.
arXiv Detail & Related papers (2025-07-10T22:04:00Z) - Model Inversion Attacks: A Survey of Approaches and Countermeasures [59.986922963781]
Recently, a new type of privacy attack, the model inversion attacks (MIAs), aims to extract sensitive features of private data for training.
Despite the significance, there is a lack of systematic studies that provide a comprehensive overview and deeper insights into MIAs.
This survey aims to summarize up-to-date MIA methods in both attacks and defenses.
arXiv Detail & Related papers (2024-11-15T08:09:28Z) - Countering Autonomous Cyber Threats [40.00865970939829]
Foundation Models present dual-use concerns broadly and within the cyber domain specifically.
Recent research has shown the potential for these advanced models to inform or independently execute offensive cyberspace operations.
This work evaluates several state-of-the-art FMs on their ability to compromise machines in an isolated network and investigates defensive mechanisms to defeat such AI-powered attacks.
arXiv Detail & Related papers (2024-10-23T22:46:44Z) - Mind the Gap: Securely modeling cyber risk based on security deviations
from a peer group [2.7910505923792646]
This paper proposes a new framework for cyber posture against peers and estimating cyber risk within specific economic sectors.
We introduce a new top-line variable called the Defense Gap Index representing the weighted security gap between an organization and its peers.
We apply this approach in a specific sector using data collected from 25 large firms.
arXiv Detail & Related papers (2024-02-06T17:22:45Z) - A high throughput Intrusion Detection System (IDS) to enhance the security of data transmission among research centers [39.65647745132031]
This paper presents a packet sniffer that was designed using a commercial FPGA development board.
The system can support a data throughput of 10 Gbit/s with preliminary results showing that the speed of data transmission can be reliably extended to 100 Gbit/s.
It is particularly suited for the security of universities and research centers, where point-to-point network connections are dominant.
arXiv Detail & Related papers (2023-11-10T14:30:00Z) - Stepping out of Flatland: Discovering Behavior Patterns as Topological Structures in Cyber Hypergraphs [0.7835894511242797]
We present a novel framework based in the theory of hypergraphs and topology to understand data from cyber networks.
We will demonstrate concrete examples in a large-scale cyber network dataset.
arXiv Detail & Related papers (2023-11-08T00:00:33Z) - Graph Mining for Cybersecurity: A Survey [61.505995908021525]
The explosive growth of cyber attacks nowadays, such as malware, spam, and intrusions, caused severe consequences on society.
Traditional Machine Learning (ML) based methods are extensively used in detecting cyber threats, but they hardly model the correlations between real-world cyber entities.
With the proliferation of graph mining techniques, many researchers investigated these techniques for capturing correlations between cyber entities and achieving high performance.
arXiv Detail & Related papers (2023-04-02T08:43:03Z) - A robust statistical framework for cyber-vulnerability prioritisation under partial information in threat intelligence [0.0]
This work introduces a robust statistical framework for quantitative and qualitative reasoning under uncertainty about cyber-vulnerabilities.
We identify a novel accuracy measure suited for rank in variance under partial knowledge of the whole set of existing vulnerabilities.
We discuss the implications of partial knowledge about cyber-vulnerabilities on threat intelligence and decision-making in operational scenarios.
arXiv Detail & Related papers (2023-02-16T15:05:43Z) - Preventing Unauthorized Use of Proprietary Data: Poisoning for Secure
Dataset Release [52.504589728136615]
We develop a data poisoning method by which publicly released data can be minimally modified to prevent others from train-ing models on it.
We demonstrate the success of our approach onImageNet classification and on facial recognition.
arXiv Detail & Related papers (2021-02-16T19:12:34Z) - Measurement-driven Security Analysis of Imperceptible Impersonation
Attacks [54.727945432381716]
We study the exploitability of Deep Neural Network-based Face Recognition systems.
We show that factors such as skin color, gender, and age, impact the ability to carry out an attack on a specific target victim.
We also study the feasibility of constructing universal attacks that are robust to different poses or views of the attacker's face.
arXiv Detail & Related papers (2020-08-26T19:27:27Z) - PicoDomain: A Compact High-Fidelity Cybersecurity Dataset [0.9281671380673305]
Current cybersecurity datasets either offer no ground truth or do so with anonymized data.
Most existing datasets are large enough to make them unwieldy during prototype development.
In this paper we have developed the PicoDomain dataset, a compact high-fidelity collection of Zeek logs from a realistic intrusion.
arXiv Detail & Related papers (2020-08-20T20:18:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.