Learning quantum phase transition in parametrized quantum circuits with an attention mechanism
- URL: http://arxiv.org/abs/2506.06678v1
- Date: Sat, 07 Jun 2025 06:21:40 GMT
- Title: Learning quantum phase transition in parametrized quantum circuits with an attention mechanism
- Authors: Li Xin, Zhang-Qi Yin,
- Abstract summary: Learning many-body quantum states and quantum phase transitions remains a major challenge in quantum many-body physics.<n>We propose a novel framework that bypasses the need to measure physical observables by directly learning the parameters of parameterized quantum circuits.
- Score: 0.18416014644193066
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Learning many-body quantum states and quantum phase transitions remains a major challenge in quantum many-body physics. Classical machine learning methods offer certain advantages in addressing these difficulties. In this work, we propose a novel framework that bypasses the need to measure physical observables by directly learning the parameters of parameterized quantum circuits. By integrating the attention mechanism from large language models (LLMs) with a variational autoencoder (VAE), we efficiently capture hidden correlations within the circuit parameters. These correlations allow us to extract information about quantum phase transitions in an unsupervised manner. Moreover, our VAE acts as a classical representation of parameterized quantum circuits and the corresponding many-body quantum states, enabling the efficient generation of quantum states associated with specific phases. We apply our framework to a variety of quantum systems and demonstrate its broad applicability, with particularly strong performance in identifying topological quantum phase transitions.
Related papers
- Hardware-efficient quantum phase estimation via local control [0.2796197251957244]
We present an approach to quantum phase estimation that uses only locally controlled operations.<n>At the heart of our approach are efficient routines to measure the complex phase of the expectation value of the time-evolution operator.<n>Our methods offer a practical pathway for measuring spectral properties in large many-body quantum systems using current quantum devices.
arXiv Detail & Related papers (2025-06-23T15:34:58Z) - VQC-MLPNet: An Unconventional Hybrid Quantum-Classical Architecture for Scalable and Robust Quantum Machine Learning [60.996803677584424]
Variational Quantum Circuits (VQCs) offer a novel pathway for quantum machine learning.<n>Their practical application is hindered by inherent limitations such as constrained linear expressivity, optimization challenges, and acute sensitivity to quantum hardware noise.<n>This work introduces VQC-MLPNet, a scalable and robust hybrid quantum-classical architecture designed to overcome these obstacles.
arXiv Detail & Related papers (2025-06-12T01:38:15Z) - Quantum Equilibrium Propagation for efficient training of quantum systems based on Onsager reciprocity [0.0]
Equilibrium propagation (EP) is a procedure that has been introduced and applied to classical energy-based models which relax to an equilibrium.
Here, we show a direct connection between EP and Onsager reciprocity and exploit this to derive a quantum version of EP.
This can be used to optimize loss functions that depend on the expectation values of observables of an arbitrary quantum system.
arXiv Detail & Related papers (2024-06-10T17:22:09Z) - Unveiling quantum phase transitions from traps in variational quantum algorithms [0.0]
We introduce a hybrid algorithm that combines quantum optimization with classical machine learning.<n>We use LASSO for identifying conventional phase transitions and the Transformer model for topological transitions.<n>We validated the method with numerical simulations and real-hardware experiments on Rigetti's Ankaa 9Q-1 quantum computer.
arXiv Detail & Related papers (2024-05-14T09:01:41Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Synergy Between Quantum Circuits and Tensor Networks: Short-cutting the
Race to Practical Quantum Advantage [43.3054117987806]
We introduce a scalable procedure for harnessing classical computing resources to provide pre-optimized initializations for quantum circuits.
We show this method significantly improves the trainability and performance of PQCs on a variety of problems.
By demonstrating a means of boosting limited quantum resources using classical computers, our approach illustrates the promise of this synergy between quantum and quantum-inspired models in quantum computing.
arXiv Detail & Related papers (2022-08-29T15:24:03Z) - Circuit Symmetry Verification Mitigates Quantum-Domain Impairments [69.33243249411113]
We propose circuit-oriented symmetry verification that are capable of verifying the commutativity of quantum circuits without the knowledge of the quantum state.
In particular, we propose the Fourier-temporal stabilizer (STS) technique, which generalizes the conventional quantum-domain formalism to circuit-oriented stabilizers.
arXiv Detail & Related papers (2021-12-27T21:15:35Z) - Measurement-induced entanglement phase transitions in variational
quantum circuits [0.4499833362998487]
Variational quantum algorithms (VQAs) classically optimize a parametrized quantum circuit to solve a computational task.
We study the entanglement transition in variational quantum circuits endowed with intermediate projective measurements.
Our work paves an avenue for greatly improving the trainability of quantum circuits by incorporating intermediate measurement protocols in currently available quantum hardware.
arXiv Detail & Related papers (2021-11-15T19:00:28Z) - Efficient criteria of quantumness for a large system of qubits [58.720142291102135]
We discuss the dimensionless combinations of basic parameters of large, partially quantum coherent systems.
Based on analytical and numerical calculations, we suggest one such number for a system of qubits undergoing adiabatic evolution.
arXiv Detail & Related papers (2021-08-30T23:50:05Z) - Learning quantum phases via single-qubit disentanglement [4.266508670102269]
We present a novel and efficient quantum phase transition, utilizing disentanglement with reinforcement learning-optimized variational quantum circuits.
Our approach not only identifies phase transitions based on the performance of the disentangling circuits but also exhibits impressive scalability, facilitating its application in larger and more complex quantum systems.
arXiv Detail & Related papers (2021-07-08T00:15:31Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - Quantum Phases of Matter on a 256-Atom Programmable Quantum Simulator [41.74498230885008]
We demonstrate a programmable quantum simulator based on deterministically prepared two-dimensional arrays of neutral atoms.
We benchmark the system by creating and characterizing high-fidelity antiferromagnetically ordered states.
We then create and study several new quantum phases that arise from the interplay between interactions and coherent laser excitation.
arXiv Detail & Related papers (2020-12-22T19:00:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.