Do Protein Transformers Have Biological Intelligence?
- URL: http://arxiv.org/abs/2506.06701v1
- Date: Sat, 07 Jun 2025 07:52:52 GMT
- Title: Do Protein Transformers Have Biological Intelligence?
- Authors: Fudong Lin, Wanrou Du, Jinchan Liu, Tarikul Milon, Shelby Meche, Wu Xu, Xiaoqi Qin, Xu Yuan,
- Abstract summary: We introduce a protein function dataset, namely Protein-FN, providing over 9000 protein data with meaningful labels.<n>Second, we devise a new Transformer architecture, namely Sequence Protein Transformers (SPT), for computationally efficient protein function predictions.<n>Third, we develop a novel Explainable Artificial Intelligence (XAI) technique called Sequence Score, which can efficiently interpret the decision-making processes of protein models.
- Score: 13.90184353062669
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Deep neural networks, particularly Transformers, have been widely adopted for predicting the functional properties of proteins. In this work, we focus on exploring whether Protein Transformers can capture biological intelligence among protein sequences. To achieve our goal, we first introduce a protein function dataset, namely Protein-FN, providing over 9000 protein data with meaningful labels. Second, we devise a new Transformer architecture, namely Sequence Protein Transformers (SPT), for computationally efficient protein function predictions. Third, we develop a novel Explainable Artificial Intelligence (XAI) technique called Sequence Score, which can efficiently interpret the decision-making processes of protein models, thereby overcoming the difficulty of deciphering biological intelligence bided in Protein Transformers. Remarkably, even our smallest SPT-Tiny model, which contains only 5.4M parameters, demonstrates impressive predictive accuracy, achieving 94.3% on the Antibiotic Resistance (AR) dataset and 99.6% on the Protein-FN dataset, all accomplished by training from scratch. Besides, our Sequence Score technique helps reveal that our SPT models can discover several meaningful patterns underlying the sequence structures of protein data, with these patterns aligning closely with the domain knowledge in the biology community. We have officially released our Protein-FN dataset on Hugging Face Datasets https://huggingface.co/datasets/Protein-FN/Protein-FN. Our code is available at https://github.com/fudong03/BioIntelligence.
Related papers
- Multi-modal Representation Learning Enables Accurate Protein Function Prediction in Low-Data Setting [0.0]
HOPER (HOlistic ProtEin Representation) is a novel framework designed to enhance protein function prediction (PFP) in low-data settings.<n>Our results highlight the effectiveness of multimodal representation learning for overcoming data limitations in biological research.
arXiv Detail & Related papers (2024-11-22T20:13:55Z) - Advanced atom-level representations for protein flexibility prediction utilizing graph neural networks [0.0]
We propose graph neural networks (GNNs) to learn protein representations at the atomic level and predict B-factors from protein 3D structures.
The Meta-GNN model achieves a correlation coefficient of 0.71 on a large and diverse test set of over 4k proteins.
arXiv Detail & Related papers (2024-08-22T16:15:13Z) - ProtT3: Protein-to-Text Generation for Text-based Protein Understanding [88.43323947543996]
Language Models (LMs) excel in understanding textual descriptions of proteins.
Protein Language Models (PLMs) can understand and convert protein data into high-quality representations, but struggle to process texts.
We introduce ProtT3, a framework for Protein-to-Text Generation for Text-based Protein Understanding.
arXiv Detail & Related papers (2024-05-21T08:06:13Z) - ProLLM: Protein Chain-of-Thoughts Enhanced LLM for Protein-Protein Interaction Prediction [54.132290875513405]
The prediction of protein-protein interactions (PPIs) is crucial for understanding biological functions and diseases.
Previous machine learning approaches to PPI prediction mainly focus on direct physical interactions.
We propose a novel framework ProLLM that employs an LLM tailored for PPI for the first time.
arXiv Detail & Related papers (2024-03-30T05:32:42Z) - NaNa and MiGu: Semantic Data Augmentation Techniques to Enhance Protein Classification in Graph Neural Networks [60.48306899271866]
We propose novel semantic data augmentation methods to incorporate backbone chemical and side-chain biophysical information into protein classification tasks.
Specifically, we leverage molecular biophysical, secondary structure, chemical bonds, andionic features of proteins to facilitate classification tasks.
arXiv Detail & Related papers (2024-03-21T13:27:57Z) - ProtLLM: An Interleaved Protein-Language LLM with Protein-as-Word Pre-Training [82.37346937497136]
We propose a versatile cross-modal large language model (LLM) for both protein-centric and protein-language tasks.
ProtLLM features a unique dynamic protein mounting mechanism, enabling it to handle complex inputs.
By developing a specialized protein vocabulary, we equip the model with the capability to predict not just natural language but also proteins from a vast pool of candidates.
arXiv Detail & Related papers (2024-02-28T01:29:55Z) - Efficiently Predicting Mutational Effect on Homologous Proteins by Evolution Encoding [7.067145619709089]
EvolMPNN is an efficient model to learn evolution-aware protein embeddings.
Our model shows up to 6.4% better than state-of-the-art methods and attains 36X inference speedup.
arXiv Detail & Related papers (2024-02-20T23:06:21Z) - xTrimoPGLM: Unified 100B-Scale Pre-trained Transformer for Deciphering the Language of Protein [74.64101864289572]
We propose a unified protein language model, xTrimoPGLM, to address protein understanding and generation tasks simultaneously.<n>xTrimoPGLM significantly outperforms other advanced baselines in 18 protein understanding benchmarks across four categories.<n>It can also generate de novo protein sequences following the principles of natural ones, and can perform programmable generation after supervised fine-tuning.
arXiv Detail & Related papers (2024-01-11T15:03:17Z) - A Latent Diffusion Model for Protein Structure Generation [50.74232632854264]
We propose a latent diffusion model that can reduce the complexity of protein modeling.
We show that our method can effectively generate novel protein backbone structures with high designability and efficiency.
arXiv Detail & Related papers (2023-05-06T19:10:19Z) - Retrieved Sequence Augmentation for Protein Representation Learning [40.13920287967866]
We introduce Retrieved Sequence Augmentation for protein representation learning without additional alignment or pre-processing.
We show that our model can transfer to new protein domains better and outperforms MSA Transformer on de novo protein prediction.
Our study fills a much-encountered gap in protein prediction and brings us a step closer to demystifying the domain knowledge needed to understand protein sequences.
arXiv Detail & Related papers (2023-02-24T10:31:45Z) - Leveraging Sequence Embedding and Convolutional Neural Network for
Protein Function Prediction [27.212743275697825]
Main challenges of protein function prediction are the large label space and the lack of labeled training data.
Our method leverages unsupervised sequence embedding and the success of deep convolutional neural network to overcome these challenges.
arXiv Detail & Related papers (2021-12-01T08:31:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.