論文の概要: Caterpillar GNN: Replacing Message Passing with Efficient Aggregation
- arxiv url: http://arxiv.org/abs/2506.06784v1
- Date: Sat, 07 Jun 2025 12:52:27 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-10 16:33:10.479539
- Title: Caterpillar GNN: Replacing Message Passing with Efficient Aggregation
- Title(参考訳): Caterpillar GNN: 効率的な集約によるメッセージパッシングの置き換え
- Authors: Marek Černý,
- Abstract要約: 我々は、より強くより構造化された集約機能のために、いくつかの表現性を取り除き、非効率な集約機構を導入する。
当社のアプローチでは、従来のメッセージパッシングと、色付きあるいは平らなウォークに基づくシンプルなメソッドのシームレスなスケーリングを可能にします。
そこで我々は,Catapillar GNNが計算グラフの隠蔽層におけるノード数を著しく削減しつつ,同等の予測性能を実現することを示した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Message-passing graph neural networks (MPGNNs) dominate modern graph learning, typically prioritizing maximal expressive power. In contrast, we introduce an \emph{efficient aggregation} mechanism, deliberately trading off some expressivity for stronger and more structured aggregation capabilities. Our approach allows seamless scaling between classical message-passing and simpler methods based on colored or plain walks. We rigorously characterize the expressive power at each intermediate step using homomorphism counts from a hierarchy of generalized \emph{caterpillar graphs}. Based on this foundation, we propose the \emph{Caterpillar GNN}, whose robust graph-level aggregation enables it to successfully tackle synthetic graph-level task specifically designed to be challenging for classical MPGNNs. Moreover, we demonstrate that, on real-world datasets, the Caterpillar GNN achieves comparable predictive performance while significantly reducing the number of nodes in the hidden layers of the computational graph.
- Abstract(参考訳): メッセージパッシンググラフニューラルネットワーク(MPGNN)は、一般的に最大表現力を優先する現代のグラフ学習を支配している。
対照的に、より強くより構造化されたアグリゲーション機能のために、何らかの表現性を意図的に取り除く「emph{efficient aggregate}」機構を導入する。
当社のアプローチでは、従来のメッセージパッシングと、色付きあるいは平らなウォークに基づくシンプルなメソッドのシームレスなスケーリングを可能にします。
一般化された \emph{caterpillar graph} の階層からの準同型数を用いて、各中間ステップにおける表現力を厳格に特徴づける。
この基礎に基づいて,従来のMPGNNでは困難であるように設計された合成グラフレベルタスクに,頑健なグラフレベルアグリゲーションが対応できる「emph{Caterpillar GNN}」を提案する。
さらに、実世界のデータセットにおいて、Catapillar GNNは、計算グラフの隠蔽層におけるノード数を著しく削減しつつ、同等な予測性能を達成することを示した。
関連論文リスト
- Lorentzian Graph Isomorphic Network [0.0]
Lorentzian Graph Isomorphic Network (LGIN)は、Lorentzianモデル内での識別性を高めるために設計された新しいHGNNである。
LGINは、強力で差別性の高いGNNアーキテクチャの原理をリーマン多様体に適応させた最初のものである。
論文 参考訳(メタデータ) (2025-03-31T18:49:34Z) - Beyond Message Passing: Neural Graph Pattern Machine [50.78679002846741]
本稿では,グラフサブストラクチャから直接学習することで,メッセージパッシングをバイパスする新しいフレームワークであるNeural Graph Pattern Machine(GPM)を紹介する。
GPMはタスク関連グラフパターンを効率的に抽出し、エンコードし、優先順位付けする。
論文 参考訳(メタデータ) (2025-01-30T20:37:47Z) - Scalable Message Passing Neural Networks: No Need for Attention in Large Graph Representation Learning [15.317501970096743]
我々は、標準畳み込みメッセージパッシングを注意の代わりにプレ層正規化トランスフォーマースタイルのブロックに統合することにより、高性能なディープメッセージパッシングベースグラフニューラルネットワーク(GNN)を実現できることを示す。
結果は、大グラフトランスダクティブ学習における最先端の最先端と競合するが、それ以外は計算的かつメモリ拡張的な注意機構を必要としない。
論文 参考訳(メタデータ) (2024-10-29T17:18:43Z) - Efficient Heterogeneous Graph Learning via Random Projection [58.4138636866903]
不均一グラフニューラルネットワーク(HGNN)は、異種グラフを深層学習するための強力なツールである。
最近のプリ計算ベースのHGNNは、一時間メッセージパッシングを使用して不均一グラフを正規形テンソルに変換する。
我々はRandom Projection Heterogeneous Graph Neural Network (RpHGNN) というハイブリッド計算前HGNNを提案する。
論文 参考訳(メタデータ) (2023-10-23T01:25:44Z) - Graph Ladling: Shockingly Simple Parallel GNN Training without
Intermediate Communication [100.51884192970499]
GNNは、グラフを学習するニューラルネットワークの強力なファミリーである。
GNNのスケーリングは、肥大化または拡大によって、不健康な勾配、過度なスムースメント、情報のスカッシングといった問題に悩まされる。
本稿では,現在のGNNの深層化や拡張ではなく,GNNに適したモデルスープをデータ中心の視点で表現することを提案する。
論文 参考訳(メタデータ) (2023-06-18T03:33:46Z) - Gradient Gating for Deep Multi-Rate Learning on Graphs [62.25886489571097]
グラフニューラルネットワーク(GNN)の性能向上のための新しいフレームワークであるグラディエントゲーティング(G$2$)を提案する。
我々のフレームワークは,GNN層の出力を,基盤となるグラフのノード間でのメッセージパッシング情報のマルチレートフローのメカニズムでゲーティングすることに基づいている。
論文 参考訳(メタデータ) (2022-10-02T13:19:48Z) - Neural Graph Matching for Pre-training Graph Neural Networks [72.32801428070749]
グラフニューラルネットワーク(GNN)は、構造データのモデリングにおいて強力な能力を示している。
GMPTと呼ばれる新しいグラフマッチングベースのGNN事前学習フレームワークを提案する。
提案手法は,完全自己指導型プレトレーニングと粗粒型プレトレーニングに適用できる。
論文 参考訳(メタデータ) (2022-03-03T09:53:53Z) - GNNAutoScale: Scalable and Expressive Graph Neural Networks via
Historical Embeddings [51.82434518719011]
GNNAutoScale(GAS)は、任意のメッセージパスGNNを大規模グラフにスケールするためのフレームワークである。
ガスは、前回のトレーニングの繰り返しから過去の埋め込みを利用して計算グラフのサブツリー全体を掘り起こします。
ガスは大規模グラフ上で最先端のパフォーマンスに達する。
論文 参考訳(メタデータ) (2021-06-10T09:26:56Z) - Topological Graph Neural Networks [14.349152231293928]
永続ホモロジーを用いたグラフのグローバルトポロジ情報を取り入れた新しい層であるTOGLを提案する。
我々の層によるGNNの拡張は、合成データセットと実世界のデータの両方において、有益な予測性能をもたらす。
論文 参考訳(メタデータ) (2021-02-15T20:27:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。