論文の概要: Caterpillar GNN: Replacing Message Passing with Efficient Aggregation
- arxiv url: http://arxiv.org/abs/2506.06784v2
- Date: Fri, 26 Sep 2025 10:26:27 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-29 14:23:57.432297
- Title: Caterpillar GNN: Replacing Message Passing with Efficient Aggregation
- Title(参考訳): Caterpillar GNN: 効率的な集約によるメッセージパッシングの置き換え
- Authors: Marek Černý,
- Abstract要約: 我々は,より強く,より構造化された帰納的バイアスに対して,ある表現性を意図的に取り除くために構築された歩行入射に基づく行列に対する効率的な集約を導入する。
私たちのアプローチは、古典的なメッセージパッシングと、ウォークに基づくシンプルなメソッドのシームレスなスケーリングを可能にします。
計算グラフの隠蔽層におけるノード数を著しく削減しつつ,キャタピラーGNNの予測性能が同等であることを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Message-passing graph neural networks (MPGNNs) dominate modern graph learning. Typical efforts enhance MPGNN's expressive power by enriching the adjacency-based aggregation. In contrast, we introduce an efficient aggregation over walk incidence-based matrices that are constructed to deliberately trade off some expressivity for stronger and more structured inductive bias. Our approach allows for seamless scaling between classical message-passing and simpler methods based on walks. We rigorously characterize the expressive power at each intermediate step using homomorphism counts over a hierarchy of generalized caterpillar graphs. Based on this foundation, we propose Caterpillar GNNs, whose robust graph-level aggregation successfully tackles a benchmark specifically designed to challenge MPGNNs. Moreover, we demonstrate that, on real-world datasets, Caterpillar GNNs achieve comparable predictive performance while significantly reducing the number of nodes in the hidden layers of the computational graph.
- Abstract(参考訳): メッセージパッシンググラフニューラルネットワーク(MPGNN)は、現代のグラフ学習を支配している。
典型的な取り組みは、隣接ベースの集約を充実させることでMPGNNの表現力を高める。
対照的に、より強く、より構造化された帰納バイアスのために、ある表現性を意図的に取り除くように構築された歩行入射に基づく行列に対する効率的な集約を導入する。
私たちのアプローチは、古典的なメッセージパッシングと、ウォークに基づくシンプルなメソッドのシームレスなスケーリングを可能にします。
一般化された毛細管グラフの階層上の準同型数を用いて、各中間段階における表現力を厳格に特徴づける。
そこで我々は,MPGNNに挑戦するために設計されたベンチマークに,頑健なグラフレベルのアグリゲーションをうまく取り組んだCaterpillar GNNを提案する。
さらに、実世界のデータセットにおいて、Catapillar GNNは、計算グラフの隠蔽層におけるノード数を著しく削減しつつ、同等な予測性能を達成することを示した。
関連論文リスト
- Lorentzian Graph Isomorphic Network [0.0]
Lorentzian Graph Isomorphic Network (LGIN)は、Lorentzianモデル内での識別性を高めるために設計された新しいHGNNである。
LGINは、強力で差別性の高いGNNアーキテクチャの原理をリーマン多様体に適応させた最初のものである。
論文 参考訳(メタデータ) (2025-03-31T18:49:34Z) - Beyond Message Passing: Neural Graph Pattern Machine [50.78679002846741]
本稿では,グラフサブストラクチャから直接学習することで,メッセージパッシングをバイパスする新しいフレームワークであるNeural Graph Pattern Machine(GPM)を紹介する。
GPMはタスク関連グラフパターンを効率的に抽出し、エンコードし、優先順位付けする。
論文 参考訳(メタデータ) (2025-01-30T20:37:47Z) - Revisiting Graph Neural Networks on Graph-level Tasks: Comprehensive Experiments, Analysis, and Improvements [54.006506479865344]
グラフレベルグラフニューラルネットワーク(GNN)のための統一評価フレームワークを提案する。
このフレームワークは、さまざまなデータセットにわたるGNNを評価するための標準化された設定を提供する。
また,表現性の向上と一般化機能を備えた新しいGNNモデルを提案する。
論文 参考訳(メタデータ) (2025-01-01T08:48:53Z) - Scalable Message Passing Neural Networks: No Need for Attention in Large Graph Representation Learning [15.317501970096743]
我々は、標準畳み込みメッセージパッシングを注意の代わりにプレ層正規化トランスフォーマースタイルのブロックに統合することにより、高性能なディープメッセージパッシングベースグラフニューラルネットワーク(GNN)を実現できることを示す。
結果は、大グラフトランスダクティブ学習における最先端の最先端と競合するが、それ以外は計算的かつメモリ拡張的な注意機構を必要としない。
論文 参考訳(メタデータ) (2024-10-29T17:18:43Z) - Efficient Heterogeneous Graph Learning via Random Projection [58.4138636866903]
不均一グラフニューラルネットワーク(HGNN)は、異種グラフを深層学習するための強力なツールである。
最近のプリ計算ベースのHGNNは、一時間メッセージパッシングを使用して不均一グラフを正規形テンソルに変換する。
我々はRandom Projection Heterogeneous Graph Neural Network (RpHGNN) というハイブリッド計算前HGNNを提案する。
論文 参考訳(メタデータ) (2023-10-23T01:25:44Z) - Graph Ladling: Shockingly Simple Parallel GNN Training without
Intermediate Communication [100.51884192970499]
GNNは、グラフを学習するニューラルネットワークの強力なファミリーである。
GNNのスケーリングは、肥大化または拡大によって、不健康な勾配、過度なスムースメント、情報のスカッシングといった問題に悩まされる。
本稿では,現在のGNNの深層化や拡張ではなく,GNNに適したモデルスープをデータ中心の視点で表現することを提案する。
論文 参考訳(メタデータ) (2023-06-18T03:33:46Z) - Gradient Gating for Deep Multi-Rate Learning on Graphs [62.25886489571097]
グラフニューラルネットワーク(GNN)の性能向上のための新しいフレームワークであるグラディエントゲーティング(G$2$)を提案する。
我々のフレームワークは,GNN層の出力を,基盤となるグラフのノード間でのメッセージパッシング情報のマルチレートフローのメカニズムでゲーティングすることに基づいている。
論文 参考訳(メタデータ) (2022-10-02T13:19:48Z) - Neural Graph Matching for Pre-training Graph Neural Networks [72.32801428070749]
グラフニューラルネットワーク(GNN)は、構造データのモデリングにおいて強力な能力を示している。
GMPTと呼ばれる新しいグラフマッチングベースのGNN事前学習フレームワークを提案する。
提案手法は,完全自己指導型プレトレーニングと粗粒型プレトレーニングに適用できる。
論文 参考訳(メタデータ) (2022-03-03T09:53:53Z) - Hierarchical graph neural nets can capture long-range interactions [8.067880298298185]
与えられたグラフの多重解像度表現を利用する階層的メッセージパッシングモデルについて検討する。
これにより、ローカル情報を失うことなく、大きな受容領域にまたがる特徴の学習が容易になる。
階層グラフネット(HGNet)を導入し、任意の2つの接続ノードに対して、最大対数長のメッセージパスパスが存在することを保証します。
論文 参考訳(メタデータ) (2021-07-15T16:24:22Z) - GNNAutoScale: Scalable and Expressive Graph Neural Networks via
Historical Embeddings [51.82434518719011]
GNNAutoScale(GAS)は、任意のメッセージパスGNNを大規模グラフにスケールするためのフレームワークである。
ガスは、前回のトレーニングの繰り返しから過去の埋め込みを利用して計算グラフのサブツリー全体を掘り起こします。
ガスは大規模グラフ上で最先端のパフォーマンスに達する。
論文 参考訳(メタデータ) (2021-06-10T09:26:56Z) - Topological Graph Neural Networks [14.349152231293928]
永続ホモロジーを用いたグラフのグローバルトポロジ情報を取り入れた新しい層であるTOGLを提案する。
我々の層によるGNNの拡張は、合成データセットと実世界のデータの両方において、有益な予測性能をもたらす。
論文 参考訳(メタデータ) (2021-02-15T20:27:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。