Deep Inertial Pose: A deep learning approach for human pose estimation
- URL: http://arxiv.org/abs/2506.06850v1
- Date: Sat, 07 Jun 2025 16:12:49 GMT
- Title: Deep Inertial Pose: A deep learning approach for human pose estimation
- Authors: Sara M. Cerqueira, Manuel Palermo, Cristina P. Santos,
- Abstract summary: The most efficient method was the Hybrid LSTM-Madgwick detached, which achieved an Quaternion Angle distance error of 7.96, using Mtw Awinda data.<n>This work indicates that Neural Networks can be trained to estimate human pose, with results comparable to the state-of-the-art fusion filters.
- Score: 4.620800002256081
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Inertial-based Motion capture system has been attracting growing attention due to its wearability and unsconstrained use. However, accurate human joint estimation demands several complex and expertise demanding steps, which leads to expensive software such as the state-of-the-art MVN Awinda from Xsens Technologies. This work aims to study the use of Neural Networks to abstract the complex biomechanical models and analytical mathematics required for pose estimation. Thus, it presents a comparison of different Neural Network architectures and methodologies to understand how accurately these methods can estimate human pose, using both low cost(MPU9250) and high end (Mtw Awinda) Magnetic, Angular Rate, and Gravity (MARG) sensors. The most efficient method was the Hybrid LSTM-Madgwick detached, which achieved an Quaternion Angle distance error of 7.96, using Mtw Awinda data. Also, an ablation study was conducted to study the impact of data augmentation, output representation, window size, loss function and magnetometer data on the pose estimation error. This work indicates that Neural Networks can be trained to estimate human pose, with results comparable to the state-of-the-art fusion filters.
Related papers
- Efficient Machine Unlearning via Influence Approximation [75.31015485113993]
Influence-based unlearning has emerged as a prominent approach to estimate the impact of individual training samples on model parameters without retraining.<n>This paper establishes a theoretical link between memorizing (incremental learning) and forgetting (unlearning)<n>We introduce the Influence Approximation Unlearning algorithm for efficient machine unlearning from the incremental perspective.
arXiv Detail & Related papers (2025-07-31T05:34:27Z) - Fusing CFD and measurement data using transfer learning [49.1574468325115]
We introduce a non-linear method based on neural networks combining simulation and measurement data via transfer learning.<n>In a first step, the neural network is trained on simulation data to learn spatial features of the distributed quantities.<n>The second step involves transfer learning on the measurement data to correct for systematic errors between simulation and measurement by only re-training a small subset of the entire neural network model.
arXiv Detail & Related papers (2025-07-28T07:21:46Z) - Comparison of gait phase detection using traditional machine learning
and deep learning techniques [3.11526333124308]
This study proposes a few Machine Learning (ML) based models on lower-limb EMG data for human walking.
The results show up to 75% average accuracy for traditional ML models and 79% for Deep Learning (DL) model.
arXiv Detail & Related papers (2024-03-07T10:05:09Z) - Exploring Novel Object Recognition and Spontaneous Location Recognition
Machine Learning Analysis Techniques in Alzheimer's Mice [0.0]
This study is centered on the development, application, and evaluation of a state-of-the-art computational pipeline.
The pipeline integrates three advanced computational models: Any-Maze for initial data collection, DeepLabCut for detailed pose estimation, and Convolutional Neural Networks (CNNs) for nuanced behavioral classification.
arXiv Detail & Related papers (2023-12-12T00:54:39Z) - Innovative Horizons in Aerial Imagery: LSKNet Meets DiffusionDet for
Advanced Object Detection [55.2480439325792]
We present an in-depth evaluation of an object detection model that integrates the LSKNet backbone with the DiffusionDet head.
The proposed model achieves a mean average precision (MAP) of approximately 45.7%, which is a significant improvement.
This advancement underscores the effectiveness of the proposed modifications and sets a new benchmark in aerial image analysis.
arXiv Detail & Related papers (2023-11-21T19:49:13Z) - Layer-wise Linear Mode Connectivity [52.6945036534469]
Averaging neural network parameters is an intuitive method for the knowledge of two independent models.
It is most prominently used in federated learning.
We analyse the performance of the models that result from averaging single, or groups.
arXiv Detail & Related papers (2023-07-13T09:39:10Z) - Fast Exploration of the Impact of Precision Reduction on Spiking Neural
Networks [63.614519238823206]
Spiking Neural Networks (SNNs) are a practical choice when the target hardware reaches the edge of computing.
We employ an Interval Arithmetic (IA) model to develop an exploration methodology that takes advantage of the capability of such a model to propagate the approximation error.
arXiv Detail & Related papers (2022-11-22T15:08:05Z) - Neural Moving Horizon Estimation for Robust Flight Control [6.023276947115864]
Estimating and reacting to external disturbances is crucial for robust flight control of quadrotors.
We propose a neural moving horizon estimator (NeuroMHE) that can automatically tune the MHE parameters modeled by a neural network.
NeuroMHE outperforms the state-of-the-art estimator with force estimation error reductions of up to 49.4%.
arXiv Detail & Related papers (2022-06-21T13:43:24Z) - Multi-fidelity Hierarchical Neural Processes [79.0284780825048]
Multi-fidelity surrogate modeling reduces the computational cost by fusing different simulation outputs.
We propose Multi-fidelity Hierarchical Neural Processes (MF-HNP), a unified neural latent variable model for multi-fidelity surrogate modeling.
We evaluate MF-HNP on epidemiology and climate modeling tasks, achieving competitive performance in terms of accuracy and uncertainty estimation.
arXiv Detail & Related papers (2022-06-10T04:54:13Z) - Interfacing Finite Elements with Deep Neural Operators for Fast
Multiscale Modeling of Mechanics Problems [4.280301926296439]
In this work, we explore the idea of multiscale modeling with machine learning and employ DeepONet, a neural operator, as an efficient surrogate of the expensive solver.
DeepONet is trained offline using data acquired from the fine solver for learning the underlying and possibly unknown fine-scale dynamics.
We present various benchmarks to assess accuracy and speedup, and in particular we develop a coupling algorithm for a time-dependent problem.
arXiv Detail & Related papers (2022-02-25T20:46:08Z) - Statistical control for spatio-temporal MEG/EEG source imaging with
desparsified multi-task Lasso [102.84915019938413]
Non-invasive techniques like magnetoencephalography (MEG) or electroencephalography (EEG) offer promise of non-invasive techniques.
The problem of source localization, or source imaging, poses however a high-dimensional statistical inference challenge.
We propose an ensemble of desparsified multi-task Lasso (ecd-MTLasso) to deal with this problem.
arXiv Detail & Related papers (2020-09-29T21:17:16Z) - Towards learned optimal q-space sampling in diffusion MRI [1.5640063295947522]
We propose a unified estimation framework for fiber tractography.
The proposed solution offers substantial improvements in the quality of signal estimation as well as the accuracy of ensuing analysis.
We present a comprehensive comparative analysis based on the Human Connectome Project data.
arXiv Detail & Related papers (2020-09-07T10:46:12Z) - Belief Propagation Reloaded: Learning BP-Layers for Labeling Problems [83.98774574197613]
We take one of the simplest inference methods, a truncated max-product Belief propagation, and add what is necessary to make it a proper component of a deep learning model.
This BP-Layer can be used as the final or an intermediate block in convolutional neural networks (CNNs)
The model is applicable to a range of dense prediction problems, is well-trainable and provides parameter-efficient and robust solutions in stereo, optical flow and semantic segmentation.
arXiv Detail & Related papers (2020-03-13T13:11:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.