Optimal Transport Driven Asymmetric Image-to-Image Translation for Nuclei Segmentation of Histological Images
- URL: http://arxiv.org/abs/2506.07023v1
- Date: Sun, 08 Jun 2025 07:05:33 GMT
- Title: Optimal Transport Driven Asymmetric Image-to-Image Translation for Nuclei Segmentation of Histological Images
- Authors: Suman Mahapatra, Pradipta Maji,
- Abstract summary: The paper introduces a new deep generative model for segmenting nuclei structures from histological images.<n>The proposed model considers an embedding space for handling information-disparity between information-rich histological image space and information-poor segmentation map domain.<n>The proposed model provides a better trade-off between network complexity and model performance compared to other existing models having complex network architectures.
- Score: 12.154569665167424
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Segmentation of nuclei regions from histological images enables morphometric analysis of nuclei structures, which in turn helps in the detection and diagnosis of diseases under consideration. To develop a nuclei segmentation algorithm, applicable to different types of target domain representations, image-to-image translation networks can be considered as they are invariant to target domain image representations. One of the important issues with image-to-image translation models is that they fail miserably when the information content between two image domains are asymmetric in nature. In this regard, the paper introduces a new deep generative model for segmenting nuclei structures from histological images. The proposed model considers an embedding space for handling information-disparity between information-rich histological image space and information-poor segmentation map domain. Integrating judiciously the concepts of optimal transport and measure theory, the model develops an invertible generator, which provides an efficient optimization framework with lower network complexity. The concept of invertible generator automatically eliminates the need of any explicit cycle-consistency loss. The proposed model also introduces a spatially-constrained squeeze operation within the framework of invertible generator to maintain spatial continuity within the image patches. The model provides a better trade-off between network complexity and model performance compared to other existing models having complex network architectures. The performance of the proposed deep generative model, along with a comparison with state-of-the-art nuclei segmentation methods, is demonstrated on publicly available histological image data sets.
Related papers
- Image Segmentation: Inducing graph-based learning [4.499833362998488]
This study explores the potential of graph neural networks (GNNs) to enhance semantic segmentation across diverse image modalities.<n>GNNs explicitly model relationships between image regions by constructing and operating on a graph representation of the image features.<n>Our analysis demonstrates the versatility of GNNs in addressing diverse segmentation challenges and highlights their potential to improve segmentation accuracy in various applications.
arXiv Detail & Related papers (2025-01-07T13:09:44Z) - Bayesian Unsupervised Disentanglement of Anatomy and Geometry for Deep Groupwise Image Registration [50.62725807357586]
This article presents a general Bayesian learning framework for multi-modal groupwise image registration.
We propose a novel hierarchical variational auto-encoding architecture to realise the inference procedure of the latent variables.
Experiments were conducted to validate the proposed framework, including four different datasets from cardiac, brain, and abdominal medical images.
arXiv Detail & Related papers (2024-01-04T08:46:39Z) - A kinetic approach to consensus-based segmentation of biomedical images [39.58317527488534]
We apply a kinetic version of a bounded confidence consensus model to biomedical segmentation problems.
The large time behavior of the system is then computed with the aid of a surrogate Fokker-Planck approach.
We minimize the introduced segmentation metric for a relevant set of 2D gray-scale images.
arXiv Detail & Related papers (2022-11-08T09:54:34Z) - Semantic Image Synthesis via Diffusion Models [174.24523061460704]
Denoising Diffusion Probabilistic Models (DDPMs) have achieved remarkable success in various image generation tasks.<n>Recent work on semantic image synthesis mainly follows the de facto GAN-based approaches.<n>We propose a novel framework based on DDPM for semantic image synthesis.
arXiv Detail & Related papers (2022-06-30T18:31:51Z) - InsMix: Towards Realistic Generative Data Augmentation for Nuclei
Instance Segmentation [29.78647170035808]
We propose a realistic data augmentation method for nuclei segmentation, named InsMix, that follows a Copy-Paste-Smooth principle.
Specifically, we propose morphology constraints that enable the augmented images to acquire luxuriant information about nuclei.
To fully exploit the pixel redundancy of the background, we propose a background perturbation method, which randomly shuffles the background patches.
arXiv Detail & Related papers (2022-06-30T08:58:05Z) - Saliency-Driven Active Contour Model for Image Segmentation [2.8348950186890467]
We propose a novel model that uses the advantages of a saliency map with local image information (LIF) and overcomes the drawbacks of previous models.
The proposed model is driven by a saliency map of an image and the local image information to enhance the progress of the active contour models.
arXiv Detail & Related papers (2022-05-23T06:02:52Z) - Self-Attentive Spatial Adaptive Normalization for Cross-Modality Domain
Adaptation [9.659642285903418]
Cross-modality synthesis of medical images to reduce the costly annotation burden by radiologists.
We present a novel approach for image-to-image translation in medical images, capable of supervised or unsupervised (unpaired image data) setups.
arXiv Detail & Related papers (2021-03-05T16:22:31Z) - Few-shot Medical Image Segmentation using a Global Correlation Network
with Discriminative Embedding [60.89561661441736]
We propose a novel method for few-shot medical image segmentation.
We construct our few-shot image segmentor using a deep convolutional network trained episodically.
We enhance discriminability of deep embedding to encourage clustering of the feature domains of the same class.
arXiv Detail & Related papers (2020-12-10T04:01:07Z) - Learning Deformable Image Registration from Optimization: Perspective,
Modules, Bilevel Training and Beyond [62.730497582218284]
We develop a new deep learning based framework to optimize a diffeomorphic model via multi-scale propagation.
We conduct two groups of image registration experiments on 3D volume datasets including image-to-atlas registration on brain MRI data and image-to-image registration on liver CT data.
arXiv Detail & Related papers (2020-04-30T03:23:45Z) - Pathological Retinal Region Segmentation From OCT Images Using Geometric
Relation Based Augmentation [84.7571086566595]
We propose improvements over previous GAN-based medical image synthesis methods by jointly encoding the intrinsic relationship of geometry and shape.
The proposed method outperforms state-of-the-art segmentation methods on the public RETOUCH dataset having images captured from different acquisition procedures.
arXiv Detail & Related papers (2020-03-31T11:50:43Z) - Roto-Translation Equivariant Convolutional Networks: Application to
Histopathology Image Analysis [11.568329857588099]
We propose a framework to encode the geometric structure of the special Euclidean motion group SE(2) in convolutional networks.
We show that consistent increase of performances can be achieved when using the proposed framework.
arXiv Detail & Related papers (2020-02-20T13:44:29Z) - Residual-Sparse Fuzzy $C$-Means Clustering Incorporating Morphological
Reconstruction and Wavelet frames [146.63177174491082]
Fuzzy $C$-Means (FCM) algorithm incorporates a morphological reconstruction operation and a tight wavelet frame transform.
We present an improved FCM algorithm by imposing an $ell_0$ regularization term on the residual between the feature set and its ideal value.
Experimental results reported for synthetic, medical, and color images show that the proposed algorithm is effective and efficient, and outperforms other algorithms.
arXiv Detail & Related papers (2020-02-14T10:00:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.