論文の概要: Decentralized Optimization on Compact Submanifolds by Quantized Riemannian Gradient Tracking
- arxiv url: http://arxiv.org/abs/2506.07351v1
- Date: Mon, 09 Jun 2025 01:57:25 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-10 21:10:47.105825
- Title: Decentralized Optimization on Compact Submanifolds by Quantized Riemannian Gradient Tracking
- Title(参考訳): 量子化リーマン勾配追跡によるコンパクト部分多様体の分散最適化
- Authors: Jun Chen, Lina Liu, Tianyi Zhu, Yong Liu, Guang Dai, Yunliang Jiang, Ivor W. Tsang,
- Abstract要約: 本稿では,コンパクト部分多様体における分散最適化の問題について考察する。
エージェントが量子化変数を用いて変数を更新するアルゴリズムを提案する。
我々の知る限りでは、量子化の存在下で$mathcalO (1/K)$収束率を達成した最初のアルゴリズムである。
- 参考スコア(独自算出の注目度): 45.147301546565316
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper considers the problem of decentralized optimization on compact submanifolds, where a finite sum of smooth (possibly non-convex) local functions is minimized by $n$ agents forming an undirected and connected graph. However, the efficiency of distributed optimization is often hindered by communication bottlenecks. To mitigate this, we propose the Quantized Riemannian Gradient Tracking (Q-RGT) algorithm, where agents update their local variables using quantized gradients. The introduction of quantization noise allows our algorithm to bypass the constraints of the accurate Riemannian projection operator (such as retraction), further improving iterative efficiency. To the best of our knowledge, this is the first algorithm to achieve an $\mathcal{O}(1/K)$ convergence rate in the presence of quantization, matching the convergence rate of methods without quantization. Additionally, we explicitly derive lower bounds on decentralized consensus associated with a function of quantization levels. Numerical experiments demonstrate that Q-RGT performs comparably to non-quantized methods while reducing communication bottlenecks and computational overhead.
- Abstract(参考訳): 本稿では、コンパクト部分多様体上の分散最適化の問題について考察する。これは、滑らかな局所関数の有限和(おそらくは非凸)が、非方向連結グラフを形成するエージェント$n$で最小化される。
しかし、分散最適化の効率はしばしば通信ボトルネックによって妨げられる。
これを軽減するために、エージェントが量子化勾配を用いてローカル変数を更新するQuantized Riemannian Gradient Tracking (Q-RGT)アルゴリズムを提案する。
量子化ノイズの導入により、精度の高いリーマン射影作用素(リトラクションなど)の制約を回避でき、さらに反復効率が向上する。
我々の知る限り、これは量子化の有無で$\mathcal{O}(1/K)$収束率を達成した最初のアルゴリズムであり、量子化のないメソッドの収束率と一致する。
さらに、量子化レベルの関数に付随する分散化されたコンセンサスの下位境界を明示的に導出する。
数値実験により、Q-RGTは通信ボトルネックと計算オーバーヘッドを低減しつつ、非量子化法と相容れない性能を示す。
関連論文リスト
- Gradient Normalization Provably Benefits Nonconvex SGD under Heavy-Tailed Noise [60.92029979853314]
重み付き雑音下でのグラディエントDescence(SGD)の収束を確実にする上での勾配正規化とクリッピングの役割について検討する。
我々の研究は、重尾雑音下でのSGDの勾配正規化の利点を示す最初の理論的証拠を提供する。
我々は、勾配正規化とクリッピングを取り入れた加速SGD変種を導入し、さらに重み付き雑音下での収束率を高めた。
論文 参考訳(メタデータ) (2024-10-21T22:40:42Z) - Decentralized Sum-of-Nonconvex Optimization [42.04181488477227]
我々は、平均的な非合意数である保証関数(sum-of-non function)の最適化問題を考察する。
本稿では,勾配,速度追跡,マルチコンセンサスといった手法を用いて,高速化された分散化1次アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-02-04T05:48:45Z) - Stochastic Optimization for Non-convex Problem with Inexact Hessian
Matrix, Gradient, and Function [99.31457740916815]
信頼領域(TR)と立方体を用いた適応正則化は、非常に魅力的な理論的性質を持つことが証明されている。
TR法とARC法はヘッセン関数,勾配関数,関数値の非コンパクトな計算を同時に行うことができることを示す。
論文 参考訳(メタデータ) (2023-10-18T10:29:58Z) - Robust Stochastic Optimization via Gradient Quantile Clipping [6.2844649973308835]
グラディエントDescent(SGD)のための量子クリッピング戦略を導入する。
通常のクリッピングチェーンとして、グラデーション・ニュー・アウトリージを使用します。
本稿では,Huberiles を用いたアルゴリズムの実装を提案する。
論文 参考訳(メタデータ) (2023-09-29T15:24:48Z) - Can Decentralized Stochastic Minimax Optimization Algorithms Converge
Linearly for Finite-Sum Nonconvex-Nonconcave Problems? [56.62372517641597]
分散化されたミニマックス最適化は、幅広い機械学習に応用されているため、ここ数年で活発に研究されている。
本稿では,非コンカブ問題に対する2つの新しい分散化ミニマックス最適化アルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-04-24T02:19:39Z) - Faster One-Sample Stochastic Conditional Gradient Method for Composite
Convex Minimization [61.26619639722804]
滑らかで非滑らかな項の和として形成される凸有限サム目標を最小化するための条件勾配法(CGM)を提案する。
提案手法は, 平均勾配 (SAG) 推定器を備え, 1回に1回のサンプルしか必要としないが, より高度な分散低減技術と同等の高速収束速度を保証できる。
論文 参考訳(メタデータ) (2022-02-26T19:10:48Z) - On Accelerating Distributed Convex Optimizations [0.0]
本稿では,分散マルチエージェント凸最適化問題について検討する。
提案アルゴリズムは, 従来の勾配偏光法よりも収束率を向上し, 線形収束することを示す。
実ロジスティック回帰問題の解法として,従来の分散アルゴリズムと比較して,アルゴリズムの性能が優れていることを示す。
論文 参考訳(メタデータ) (2021-08-19T13:19:54Z) - Differentiable Annealed Importance Sampling and the Perils of Gradient
Noise [68.44523807580438]
Annealed importance sample (AIS) と関連するアルゴリズムは、限界推定のための非常に効果的なツールである。
差別性は、目的として限界確率を最適化する可能性を認めるため、望ましい性質である。
我々はメトロポリス・ハスティングスのステップを放棄して微分可能アルゴリズムを提案し、ミニバッチ計算をさらに解き放つ。
論文 参考訳(メタデータ) (2021-07-21T17:10:14Z) - A Hybrid-Order Distributed SGD Method for Non-Convex Optimization to
Balance Communication Overhead, Computational Complexity, and Convergence
Rate [28.167294398293297]
通信負荷の少ない分散勾配降下法(SGD)を提案する。
各イテレーションにおける計算複雑性を低減するために、ワーカノードは、方向微分をゼロ階勾配推定で近似する。
論文 参考訳(メタデータ) (2020-03-27T14:02:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。