論文の概要: Malware Analysis with Artificial Intelligence and a Particular Attention
on Results Interpretability
- arxiv url: http://arxiv.org/abs/2107.11100v1
- Date: Fri, 23 Jul 2021 09:40:05 GMT
- ステータス: 処理完了
- システム内更新日: 2021-07-26 13:48:34.397914
- Title: Malware Analysis with Artificial Intelligence and a Particular Attention
on Results Interpretability
- Title(参考訳): 人工知能を用いたマルウェア解析と結果解釈可能性に関する研究
- Authors: Benjamin Marais, Tony Quertier, Christophe Chesneau
- Abstract要約: 本稿では,バイナリファイルからグレースケール画像への変換に基づくモデルを提案する。
サンプルが充填されているか、85%の精度で暗号化されているかを決定することができる。
この種のツールは、一般的な検出モデルの解釈可能性の欠如を補うデータアナリストにとって非常に有用であるべきです。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Malware detection and analysis are active research subjects in cybersecurity
over the last years. Indeed, the development of obfuscation techniques, as
packing, for example, requires special attention to detect recent variants of
malware. The usual detection methods do not necessarily provide tools to
interpret the results. Therefore, we propose a model based on the
transformation of binary files into grayscale image, which achieves an accuracy
rate of 88%. Furthermore, the proposed model can determine if a sample is
packed or encrypted with a precision of 85%. It allows us to analyze results
and act appropriately. Also, by applying attention mechanisms on detection
models, we have the possibility to identify which part of the files looks
suspicious. This kind of tool should be very useful for data analysts, it
compensates for the lack of interpretability of the common detection models,
and it can help to understand why some malicious files are undetected.
- Abstract(参考訳): マルウェアの検出と分析は、サイバーセキュリティにおける過去数年間の活発な研究課題である。
実際、例えばパッケージングのような難読化技術の開発には、最近のマルウェアの変種を検出するために特別な注意が必要である。
通常の検出方法は必ずしも結果を解釈するためのツールを提供していない。
そこで本研究では,バイナリファイルのグレースケール画像への変換に基づくモデルを提案する。
さらに,提案モデルでは,サンプルが85%の精度で満たされているか,あるいは暗号化されているかを判定できる。
結果を分析し、適切に振る舞うことができます。
また,検出モデルに注意機構を適用することで,ファイルのどの部分が疑わしいかを特定することができる。
この種のツールはデータアナリストにとって非常に有用であり、一般的な検出モデルの解釈可能性の欠如を補い、悪意のあるファイルが検出されていない理由を理解するのに役立つ。
関連論文リスト
- MASKDROID: Robust Android Malware Detection with Masked Graph Representations [56.09270390096083]
マルウェアを識別する強力な識別能力を持つ強力な検出器MASKDROIDを提案する。
我々は、グラフニューラルネットワークベースのフレームワークにマスキング機構を導入し、MASKDROIDに入力グラフ全体の復元を強制する。
この戦略により、モデルは悪意のあるセマンティクスを理解し、より安定した表現を学習し、敵攻撃に対する堅牢性を高めることができる。
論文 参考訳(メタデータ) (2024-09-29T07:22:47Z) - Detecting new obfuscated malware variants: A lightweight and interpretable machine learning approach [0.0]
本稿では,高度に正確で軽量で解釈可能な,難読化マルウェアを検出する機械学習システムを提案する。
本システムでは,1つのマルウェアサブタイプ,すなわちSpywareファミリーのTransponderでのみ訓練されているにもかかわらず,15種類のマルウェアサブタイプを検出することができる。
トランスポンダー中心のモデルは99.8%を超え、平均処理速度はファイルあたり5.7マイクロ秒であった。
論文 参考訳(メタデータ) (2024-07-07T12:41:40Z) - Bayesian Learned Models Can Detect Adversarial Malware For Free [28.498994871579985]
対数訓練は有効な方法であるが、大規模データセットにスケールアップするには計算コストがかかる。
特にベイズ式はモデルパラメータの分布を捉えることができ、モデル性能を犠牲にすることなく不確実性を定量化することができる。
ベイズ学習法で不確実性を定量化することで、敵のマルウェアを防御できることがわかった。
論文 参考訳(メタデータ) (2024-03-27T07:16:48Z) - Small Effect Sizes in Malware Detection? Make Harder Train/Test Splits! [51.668411293817464]
業界関係者は、モデルが数億台のマシンにデプロイされているため、マルウェア検出精度の小さな改善に気を配っている。
学術研究はしばしば1万のサンプルの順序で公開データセットに制限される。
利用可能なサンプルのプールから難易度ベンチマークを生成するためのアプローチを考案する。
論文 参考訳(メタデータ) (2023-12-25T21:25:55Z) - Innovative Horizons in Aerial Imagery: LSKNet Meets DiffusionDet for
Advanced Object Detection [55.2480439325792]
本稿では,LSKNetのバックボーンをDiffusionDetヘッドに統合したオブジェクト検出モデルの詳細な評価を行う。
提案手法は平均精度(MAP)を約45.7%向上させる。
この進歩は、提案された修正の有効性を強調し、航空画像解析の新しいベンチマークを設定する。
論文 参考訳(メタデータ) (2023-11-21T19:49:13Z) - Burning the Adversarial Bridges: Robust Windows Malware Detection
Against Binary-level Mutations [16.267773730329207]
そこで本研究では,バイナリレベルのブラックボックス攻撃マルウェアの実例の根本原因分析を行った。
我々は、ソフトウェア内の揮発性情報チャネルを強調し、攻撃面を排除するために3つのソフトウェア前処理手順を導入する。
新たなセクションインジェクション攻撃に対抗するために,グラフに基づくセクション依存情報抽出手法を提案する。
論文 参考訳(メタデータ) (2023-10-05T03:28:02Z) - DRSM: De-Randomized Smoothing on Malware Classifier Providing Certified
Robustness [58.23214712926585]
我々は,マルウェア検出領域の非ランダム化スムース化技術を再設計し,DRSM(De-Randomized Smoothed MalConv)を開発した。
具体的には,実行可能ファイルの局所構造を最大に保ちながら,逆数バイトの影響を確実に抑制するウィンドウアブレーション方式を提案する。
私たちは、マルウェア実行ファイルの静的検出という領域で、認証された堅牢性を提供する最初の人です。
論文 参考訳(メタデータ) (2023-03-20T17:25:22Z) - Towards a Fair Comparison and Realistic Design and Evaluation Framework
of Android Malware Detectors [63.75363908696257]
一般的な評価フレームワークを用いて,Androidのマルウェア検出に関する10の研究成果を分析した。
データセットの作成やデザイナの設計に考慮しない場合、トレーニングされたMLモデルに大きく影響する5つの要因を特定します。
その結果,MLに基づく検出器は楽観的に評価され,良好な結果が得られた。
論文 参考訳(メタデータ) (2022-05-25T08:28:08Z) - Mate! Are You Really Aware? An Explainability-Guided Testing Framework
for Robustness of Malware Detectors [49.34155921877441]
マルウェア検出装置のロバスト性を示すための説明可能性誘導型およびモデルに依存しないテストフレームワークを提案する。
次に、このフレームワークを使用して、操作されたマルウェアを検出する最先端のマルウェア検知器の能力をテストする。
我々の発見は、現在のマルウェア検知器の限界と、その改善方法に光を当てた。
論文 参考訳(メタデータ) (2021-11-19T08:02:38Z) - Malware Detection Using Frequency Domain-Based Image Visualization and
Deep Learning [16.224649756613655]
画像分類によるマルウェアの検出と可視化を行う新しい手法を提案する。
実行可能なバイナリは、離散コサイン変換ドメイン内のバイトのNグラム(N=2)のカウントから得られるグレースケール画像として表現される。
浅いニューラルネットワークは分類のために訓練され、その精度は転送学習を用いて訓練されるresnetのようなディープネットワークアーキテクチャと比較される。
論文 参考訳(メタデータ) (2021-01-26T06:07:46Z) - MDEA: Malware Detection with Evolutionary Adversarial Learning [16.8615211682877]
MDEA(Adversarial Malware Detection)モデルであるMDEAは、進化的最適化を使用して攻撃サンプルを作成し、ネットワークを回避攻撃に対して堅牢にする。
進化したマルウェアサンプルでモデルを再トレーニングすることで、その性能は大幅に改善される。
論文 参考訳(メタデータ) (2020-02-09T09:59:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。