FAMSeg: Fetal Femur and Cranial Ultrasound Segmentation Using Feature-Aware Attention and Mamba Enhancement
- URL: http://arxiv.org/abs/2506.07431v2
- Date: Sat, 14 Jun 2025 10:40:44 GMT
- Title: FAMSeg: Fetal Femur and Cranial Ultrasound Segmentation Using Feature-Aware Attention and Mamba Enhancement
- Authors: Jie He, Minglang Chen, Minying Lu, Bocheng Liang, Junming Wei, Guiyan Peng, Jiaxi Chen, Ying Tan,
- Abstract summary: This paper proposes a fetal femur and cranial ultrasound image segmentation model based on feature perception and Mamba enhancement.<n>The FAMSeg network achieved the fastest loss reduction and the best segmentation performance across images of varying sizes and orientations.
- Score: 3.307520405211055
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate ultrasound image segmentation is a prerequisite for precise biometrics and accurate assessment. Relying on manual delineation introduces significant errors and is time-consuming. However, existing segmentation models are designed based on objects in natural scenes, making them difficult to adapt to ultrasound objects with high noise and high similarity. This is particularly evident in small object segmentation, where a pronounced jagged effect occurs. Therefore, this paper proposes a fetal femur and cranial ultrasound image segmentation model based on feature perception and Mamba enhancement to address these challenges. Specifically, a longitudinal and transverse independent viewpoint scanning convolution block and a feature perception module were designed to enhance the ability to capture local detail information and improve the fusion of contextual information. Combined with the Mamba-optimized residual structure, this design suppresses the interference of raw noise and enhances local multi-dimensional scanning. The system builds global information and local feature dependencies, and is trained with a combination of different optimizers to achieve the optimal solution. After extensive experimental validation, the FAMSeg network achieved the fastest loss reduction and the best segmentation performance across images of varying sizes and orientations.
Related papers
- Frequency-enhanced Multi-granularity Context Network for Efficient Vertebrae Segmentation [33.99418884128739]
We introduce a Frequency-enhanced Multi-granularity Context Network (FMC-Net) to improve vertebrae segmentation accuracy.<n>For the high-frequency components, we apply a High-frequency Feature Refinement (HFR) to amplify the prominence of key features.<n>For the low-frequency components, we use a Multi-granularity State Space Model (MG-SSM) to aggregate feature representations with different receptive fields.
arXiv Detail & Related papers (2025-06-29T04:53:02Z) - MS-UMamba: An Improved Vision Mamba Unet for Fetal Abdominal Medical Image Segmentation [1.2721397985664153]
We propose MS-UMamba, a novel hybrid convolutional-mamba model for fetal ultrasound image segmentation.<n>Specifically, we design a visual state space block integrated with a CNN branch, which leverages Mamba's global modeling strengths.<n>We also propose an efficient multi-scale feature fusion module, which integrates feature information from different layers.
arXiv Detail & Related papers (2025-06-14T10:34:10Z) - InceptionMamba: Efficient Multi-Stage Feature Enhancement with Selective State Space Model for Microscopic Medical Image Segmentation [15.666926528144202]
We propose an efficient framework for the segmentation task, named InceptionMamba, which encodes multi-stage rich features.<n>We exploit semantic cues to capture both low-frequency and high-frequency regions to enrich the multi-stage features.<n>Our model achieves state-of-the-art performance on two challenging microscopic segmentation datasets.
arXiv Detail & Related papers (2025-06-13T20:25:12Z) - MAMBO-NET: Multi-Causal Aware Modeling Backdoor-Intervention Optimization for Medical Image Segmentation Network [51.68708264694361]
Confusion factors can affect medical images, such as complex anatomical variations and imaging modality limitations.<n>We propose a multi-causal aware modeling backdoor-intervention optimization network for medical image segmentation.<n>Our method significantly reduces the influence of confusion factors, leading to enhanced segmentation accuracy.
arXiv Detail & Related papers (2025-05-28T01:40:10Z) - PathSegDiff: Pathology Segmentation using Diffusion model representations [63.20694440934692]
We propose PathSegDiff, a novel approach for histopathology image segmentation that leverages Latent Diffusion Models (LDMs) as pre-trained featured extractors.<n>Our method utilizes a pathology-specific LDM, guided by a self-supervised encoder, to extract rich semantic information from H&E stained histopathology images.<n>Our experiments demonstrate significant improvements over traditional methods on the BCSS and GlaS datasets.
arXiv Detail & Related papers (2025-04-09T14:58:21Z) - SAS: Segment Anything Small for Ultrasound -- A Non-Generative Data Augmentation Technique for Robust Deep Learning in Ultrasound Imaging [1.0485739694839666]
Segment Anything Small (SAS) is a simple yet effective scale- and texture-aware data augmentation technique.<n>SAS enhances the performance of deep learning models for segmenting small anatomical structures in ultrasound images.
arXiv Detail & Related papers (2025-03-07T20:24:35Z) - PINN-EMFNet: PINN-based and Enhanced Multi-Scale Feature Fusion Network for Breast Ultrasound Images Segmentation [5.246262946799736]
This study proposes a PINN-based and Enhanced Multi-Scale Feature Fusion Network.<n>The network efficiently integrates and globally models multi-scale features through several structural innovations.<n>In the decoder section, a Multi-Scale Feature Refinement Decoder is employed, which, combined with a Multi-Scale Supervision Mechanism and a correction module, significantly improves segmentation accuracy and adaptability.
arXiv Detail & Related papers (2024-12-22T09:16:00Z) - Advancing Medical Image Segmentation: Morphology-Driven Learning with Diffusion Transformer [4.672688418357066]
We propose a novel Transformer Diffusion (DTS) model for robust segmentation in the presence of noise.
Our model, which analyzes the morphological representation of images, shows better results than the previous models in various medical imaging modalities.
arXiv Detail & Related papers (2024-08-01T07:35:54Z) - Dual-scale Enhanced and Cross-generative Consistency Learning for Semi-supervised Medical Image Segmentation [49.57907601086494]
Medical image segmentation plays a crucial role in computer-aided diagnosis.
We propose a novel Dual-scale Enhanced and Cross-generative consistency learning framework for semi-supervised medical image (DEC-Seg)
arXiv Detail & Related papers (2023-12-26T12:56:31Z) - A Complementary Global and Local Knowledge Network for Ultrasound
denoising with Fine-grained Refinement [0.7424725048947504]
Ultrasound imaging serves as an effective and non-invasive diagnostic tool commonly employed in clinical examinations.
Existing methods for speckle noise reduction induce excessive image smoothing or fail to preserve detailed information adequately.
We propose a complementary global and local knowledge network for ultrasound denoising with fine-grained refinement.
arXiv Detail & Related papers (2023-10-05T09:12:34Z) - Self-supervised Semantic Segmentation: Consistency over Transformation [3.485615723221064]
We propose a novel self-supervised algorithm, textbfS$3$-Net, which integrates a robust framework based on the proposed Inception Large Kernel Attention (I-LKA) modules.
We leverage deformable convolution as an integral component to effectively capture and delineate lesion deformations for superior object boundary definition.
Our experimental results on skin lesion and lung organ segmentation tasks show the superior performance of our method compared to the SOTA approaches.
arXiv Detail & Related papers (2023-08-31T21:28:46Z) - Reliable Joint Segmentation of Retinal Edema Lesions in OCT Images [55.83984261827332]
In this paper, we propose a novel reliable multi-scale wavelet-enhanced transformer network.
We develop a novel segmentation backbone that integrates a wavelet-enhanced feature extractor network and a multi-scale transformer module.
Our proposed method achieves better segmentation accuracy with a high degree of reliability as compared to other state-of-the-art segmentation approaches.
arXiv Detail & Related papers (2022-12-01T07:32:56Z) - Weakly-supervised Learning For Catheter Segmentation in 3D Frustum
Ultrasound [74.22397862400177]
We propose a novel Frustum ultrasound based catheter segmentation method.
The proposed method achieved the state-of-the-art performance with an efficiency of 0.25 second per volume.
arXiv Detail & Related papers (2020-10-19T13:56:22Z) - Residual-Sparse Fuzzy $C$-Means Clustering Incorporating Morphological
Reconstruction and Wavelet frames [146.63177174491082]
Fuzzy $C$-Means (FCM) algorithm incorporates a morphological reconstruction operation and a tight wavelet frame transform.
We present an improved FCM algorithm by imposing an $ell_0$ regularization term on the residual between the feature set and its ideal value.
Experimental results reported for synthetic, medical, and color images show that the proposed algorithm is effective and efficient, and outperforms other algorithms.
arXiv Detail & Related papers (2020-02-14T10:00:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.