Vuyko Mistral: Adapting LLMs for Low-Resource Dialectal Translation
- URL: http://arxiv.org/abs/2506.07617v1
- Date: Mon, 09 Jun 2025 10:30:35 GMT
- Title: Vuyko Mistral: Adapting LLMs for Low-Resource Dialectal Translation
- Authors: Roman Kyslyi, Yuliia Maksymiuk, Ihor Pysmennyi,
- Abstract summary: This paper introduces the first effort to adapt large language models to the Ukrainian dialect Hutsul.<n>We created a parallel corpus of 9852 dialect-to-standard Ukrainian sentence pairs and a dictionary of 7320 dialectal word mappings.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper we introduce the first effort to adapt large language models (LLMs) to the Ukrainian dialect (in our case Hutsul), a low-resource and morphologically complex dialect spoken in the Carpathian Highlands. We created a parallel corpus of 9852 dialect-to-standard Ukrainian sentence pairs and a dictionary of 7320 dialectal word mappings. We also addressed data shortage by proposing an advanced Retrieval-Augmented Generation (RAG) pipeline to generate synthetic parallel translation pairs, expanding the corpus with 52142 examples. We have fine-tuned multiple open-source LLMs using LoRA and evaluated them on a standard-to-dialect translation task, also comparing with few-shot GPT-4o translation. In the absence of human annotators, we adopt a multi-metric evaluation strategy combining BLEU, chrF++, TER, and LLM-based judgment (GPT-4o). The results show that even small(7B) finetuned models outperform zero-shot baselines such as GPT-4o across both automatic and LLM-evaluated metrics. All data, models, and code are publicly released at: https://github.com/woters/vuyko-hutsul
Related papers
- NL in the Middle: Code Translation with LLMs and Intermediate Representations [66.41928783565795]
Large language models (LLMs) produce buggy code translations.<n>We consider whether code translation using LLMs can benefit from intermediate representations via natural language (NL) and abstract syntax trees (ASTs)
arXiv Detail & Related papers (2025-07-11T14:29:21Z) - LLM-Based Evaluation of Low-Resource Machine Translation: A Reference-less Dialect Guided Approach with a Refined Sylheti-English Benchmark [1.3927943269211591]
We propose a comprehensive framework that enhances Large Language Models (LLMs)-based machine translation evaluation.<n>We extend the ONUBAD dataset by incorporating Sylheti-English sentence pairs, corresponding machine translations, and Direct Assessment (DA) scores annotated by native speakers.<n>Our evaluation shows that the proposed pipeline consistently outperforms existing methods, achieving the highest gain of +0.1083 in Spearman correlation.
arXiv Detail & Related papers (2025-05-18T07:24:13Z) - Idiosyncrasies in Large Language Models [54.26923012617675]
We unveil and study idiosyncrasies in Large Language Models (LLMs)<n>We find that fine-tuning text embedding models on LLM-generated texts yields excellent classification accuracy.<n>We leverage LLM as judges to generate detailed, open-ended descriptions of each model's idiosyncrasies.
arXiv Detail & Related papers (2025-02-17T18:59:02Z) - What do Large Language Models Need for Machine Translation Evaluation? [12.42394213466485]
Large language models (LLMs) can achieve results comparable to fine-tuned multilingual pre-trained language models.
This paper explores what translation information, such as the source, reference, translation errors and annotation guidelines, is needed for LLMs to evaluate machine translation quality.
arXiv Detail & Related papers (2024-10-04T09:50:45Z) - Low-Resource Machine Translation through Retrieval-Augmented LLM Prompting: A Study on the Mambai Language [1.1702440973773898]
This study explores the use of large language models for translating English into Mambai, a low-resource Austronesian language spoken in Timor-Leste.
Our methodology involves the strategic selection of parallel sentences and dictionary entries for prompting.
We find that including dictionary entries in prompts and a mix of sentences retrieved through-IDF and semantic embeddings significantly improves translation quality.
arXiv Detail & Related papers (2024-04-07T05:04:38Z) - Paloma: A Benchmark for Evaluating Language Model Fit [112.481957296585]
Evaluations of language models (LMs) commonly report perplexity on monolithic data held out from training.<n>We introduce Perplexity Analysis for Language Model Assessment (Paloma), a benchmark to measure LM fit to 546 English and code domains.
arXiv Detail & Related papers (2023-12-16T19:12:45Z) - Machine Translation for Ge'ez Language [0.0]
Machine translation for low-resource languages such as Ge'ez faces challenges such as out-of-vocabulary words, domain mismatches, and lack of labeled training data.
We develop a multilingual neural machine translation (MNMT) model based on languages relatedness.
We also experiment with using GPT-3.5, a state-of-the-art LLM, for few-shot translation with fuzzy matches.
arXiv Detail & Related papers (2023-11-24T14:55:23Z) - Chain-of-Dictionary Prompting Elicits Translation in Large Language Models [100.47154959254937]
Large language models (LLMs) have shown surprisingly good performance in multilingual neural machine translation (MNMT)
We present a novel method, CoD, which augments LLMs with prior knowledge with the chains of multilingual dictionaries for a subset of input words to elicit translation abilities.
arXiv Detail & Related papers (2023-05-11T05:19:47Z) - Multilingual Machine Translation with Large Language Models: Empirical Results and Analysis [103.89753784762445]
Large language models (LLMs) have demonstrated remarkable potential in handling multilingual machine translation (MMT)
This paper systematically investigates the advantages and challenges of LLMs for MMT.
We thoroughly evaluate eight popular LLMs, including ChatGPT and GPT-4.
arXiv Detail & Related papers (2023-04-10T15:51:30Z) - Massively Multilingual Shallow Fusion with Large Language Models [62.76735265311028]
We train a single multilingual language model (LM) for shallow fusion in multiple languages.
Compared to a dense LM of similar computation during inference, GLaM reduces the WER of an English long-tail test set by 4.4% relative.
In a multilingual shallow fusion task, GLaM improves 41 out of 50 languages with an average relative WER reduction of 3.85%, and a maximum reduction of 10%.
arXiv Detail & Related papers (2023-02-17T14:46:38Z) - Using LSTM to Translate French to Senegalese Local Languages: Wolof as a
Case Study [0.0]
We propose a neural machine translation system for Wolof, a low-resource Niger-Congo language.
We gathered a parallel corpus of 70000 aligned French-Wolof sentences.
Our models are trained on a limited amount of parallel French-Wolof data.
arXiv Detail & Related papers (2020-03-27T17:09:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.