Error-Mitigated Quantum Metrology via Probabilistic Virtual Purification
- URL: http://arxiv.org/abs/2506.07618v1
- Date: Mon, 09 Jun 2025 10:31:12 GMT
- Title: Error-Mitigated Quantum Metrology via Probabilistic Virtual Purification
- Authors: Xiaodie Lin, Haidong Yuan,
- Abstract summary: Near-term quantum metrology is often constrained by noise.<n>Probable virtual channel purification is proposed to handle the largely accumulated noise.<n>Our error analysis reveals a significant reduction in bias and a quantum advantage in sampling cost.
- Score: 1.7495213911983416
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum metrology stands as a leading application of quantum science and technology, yet its precision and sensitivity are often constrained by noise. In the context of near-term quantum metrology, quantum error mitigation offers a promising strategy to leverage quantum resources. While existing error-mitigated protocols largely depend on virtual state purification, significant noise accumulation and the additional noise introduced by the noisy implementations of these protocols can impede the effectiveness. To address these problems, we propose probabilistic virtual channel purification to handle the largely accumulated noise while efficiently canceling additional noise from itself. This also naturally leads to an enhanced version of virtual state purification, namely probabilistic virtual state purification. Within the sequential scheme of quantum metrology, our error analysis reveals a significant reduction in bias and a quantum advantage in sampling cost when the number of channels encoding the interested parameters is $O(p^{-1})$, where $p$ is the error rate of the encoding channel. In this range, both probabilistic virtual purification methods demonstrate significant improvements in parameter estimation precision and robustness against practical noise, as evidenced by numerical simulations for both single- and multi-parameter tasks.
Related papers
- Error mitigation of shot-to-shot fluctuations in analog quantum simulators [46.54051337735883]
We introduce an error mitigation technique that addresses shot-to-shot fluctuations in the parameters for the Hamiltonian governing the system dynamics.<n>We rigorously prove that amplifying this shot-to-shot noise and extrapolating to the zero-noise limit recovers noiseless results for realistic noise distributions.<n> Numerically, we predict a significant enhancement in the effective many-body coherence time for Rydberg atom arrays under realistic conditions.
arXiv Detail & Related papers (2025-06-19T18:00:00Z) - Virtual purification complements quantum error correction in quantum metrology [2.2384913922317105]
We show that virtual purification (VP) can effectively suppress the effect of noise in realistic setups.<n>VP along with encoded probe states can effectively suppress the effect of noise in realistic setups.
arXiv Detail & Related papers (2025-03-16T18:56:40Z) - Readout error mitigated quantum state tomography tested on superconducting qubits [0.0]
We test the ability of readout error mitigation to correct realistic noise found in systems composed of quantum two-level objects (qubits)
By treating readout error mitigation in the context of state tomography the method becomes largely readout mode-, architecture-, noise source-, and quantum state-independent.
We identify noise sources for which readout error mitigation worked well, and observed decreases in readout by a factor of up to 30.
arXiv Detail & Related papers (2023-12-07T10:54:17Z) - Improving Continuous-variable Quantum Channels with Unitary Averaging [37.69303106863453]
We present a scheme of passive linear optical unitary averaging for protecting unknown Gaussian states transmitted through an optical channel.
The scheme reduces the effect of phase noise on purity, squeezing and entanglement, thereby enhancing the channel via a probabilistic error correcting protocol.
arXiv Detail & Related papers (2023-11-17T10:10:19Z) - Accurate and Honest Approximation of Correlated Qubit Noise [39.58317527488534]
We propose an efficient systematic construction of approximate noise channels, where their accuracy can be enhanced by incorporating noise components with higher qubit-qubit correlation degree.<n>We find that, for realistic noise strength typical for fixed-frequency superconducting qubits, correlated noise beyond two-qubit correlation can significantly affect the code simulation accuracy.
arXiv Detail & Related papers (2023-11-15T19:00:34Z) - Dynamical subset sampling of quantum error correcting protocols [0.0]
We show the capabilities of dynamical subset sampling with examples from fault-tolerant (FT) QEC.
We show that, in a typical stabilizer simulation with incoherent Pauli noise of strength $p = 10-3$, our method can reach a required sampling accuracy on the logical failure rate.
arXiv Detail & Related papers (2023-09-22T10:32:20Z) - Quantum Conformal Prediction for Reliable Uncertainty Quantification in
Quantum Machine Learning [47.991114317813555]
Quantum models implement implicit probabilistic predictors that produce multiple random decisions for each input through measurement shots.
This paper proposes to leverage such randomness to define prediction sets for both classification and regression that provably capture the uncertainty of the model.
arXiv Detail & Related papers (2023-04-06T22:05:21Z) - Error Mitigation Thresholds in Noisy Random Quantum Circuits [0.30723404270319693]
We study the robustness of probabilistic error cancellation and tensor network error mitigation when the noise is imperfectly characterized.
For one-dimensional circuits, error mitigation fails at an $mathcalO(1)$ time for any imperfection in the characterization of disorder.
We discuss further implications for tests of quantum computational advantage, fault-tolerant probes of measurement-induced phase transitions, and quantum algorithms in near-term devices.
arXiv Detail & Related papers (2023-02-08T19:00:01Z) - Importance sampling for stochastic quantum simulations [68.8204255655161]
We introduce the qDrift protocol, which builds random product formulas by sampling from the Hamiltonian according to the coefficients.
We show that the simulation cost can be reduced while achieving the same accuracy, by considering the individual simulation cost during the sampling stage.
Results are confirmed by numerical simulations performed on a lattice nuclear effective field theory.
arXiv Detail & Related papers (2022-12-12T15:06:32Z) - Error Mitigation-Aided Optimization of Parameterized Quantum Circuits:
Convergence Analysis [42.275148861039895]
Variational quantum algorithms (VQAs) offer the most promising path to obtaining quantum advantages via noisy processors.
gate noise due to imperfections and decoherence affects the gradient estimates by introducing a bias.
Quantum error mitigation (QEM) techniques can reduce the estimation bias without requiring any increase in the number of qubits.
QEM can reduce the number of required iterations, but only as long as the quantum noise level is sufficiently small.
arXiv Detail & Related papers (2022-09-23T10:48:04Z) - Suppressing Amplitude Damping in Trapped Ions: Discrete Weak
Measurements for a Non-unitary Probabilistic Noise Filter [62.997667081978825]
We introduce a low-overhead protocol to reverse this degradation.
We present two trapped-ion schemes for the implementation of a non-unitary probabilistic filter against amplitude damping noise.
This filter can be understood as a protocol for single-copy quasi-distillation.
arXiv Detail & Related papers (2022-09-06T18:18:41Z) - Error-Mitigated Quantum Metrology via Virtual Purification [0.0]
We propose an error-mitigated quantum metrology that can filter out unknown fluctuating noise.
We demonstrate that our protocol mitigates systematic errors and recovers superclassical scaling in a practical situation with time-inhomogeneous bias-inducing noise.
arXiv Detail & Related papers (2021-12-03T11:07:50Z) - Bosonic field digitization for quantum computers [62.997667081978825]
We address the representation of lattice bosonic fields in a discretized field amplitude basis.
We develop methods to predict error scaling and present efficient qubit implementation strategies.
arXiv Detail & Related papers (2021-08-24T15:30:04Z) - Quasiprobability decompositions with reduced sampling overhead [4.38301148531795]
Quantum error mitigation techniques can reduce noise on current quantum hardware without the need for fault-tolerant quantum error correction.
We present a new algorithm based on mathematical optimization that aims to choose the quasiprobability decomposition in a noise-aware manner.
arXiv Detail & Related papers (2021-01-22T19:00:06Z) - Efficient and robust certification of genuine multipartite entanglement
in noisy quantum error correction circuits [58.720142291102135]
We introduce a conditional witnessing technique to certify genuine multipartite entanglement (GME)
We prove that the detection of entanglement in a linear number of bipartitions by a number of measurements scales linearly, suffices to certify GME.
We apply our method to the noisy readout of stabilizer operators of the distance-three topological color code and its flag-based fault-tolerant version.
arXiv Detail & Related papers (2020-10-06T18:00:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.