論文の概要: Speedy Deformable 3D Gaussian Splatting: Fast Rendering and Compression of Dynamic Scenes
- arxiv url: http://arxiv.org/abs/2506.07917v1
- Date: Mon, 09 Jun 2025 16:30:48 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-10 16:33:11.053312
- Title: Speedy Deformable 3D Gaussian Splatting: Fast Rendering and Compression of Dynamic Scenes
- Title(参考訳): 高速変形可能な3次元ガウス平滑化 -高速レンダリングと動的シーンの圧縮-
- Authors: Allen Tu, Haiyang Ying, Alex Hanson, Yonghan Lee, Tom Goldstein, Matthias Zwicker,
- Abstract要約: 動的シーンへの3次元ガウススティング(3DGS)の最近の拡張は、ニューラルネットワークを用いて各ガウスの時間変化変形を予測することによって、高品質な新規ビュー合成を実現する。
しかしながら、ガウス毎のニューラルネットワークを各フレームで実行することは、レンダリング速度を制限し、メモリと計算要求を増大させる、重大なボトルネックとなる。
動的3DGSおよび4DGS表現のレンダリング速度を2つの相補的手法により低減し,高速化する汎用パイプラインであるSpeedy Deformable 3D Gaussian Splatting(SpeeDe3DGS)を提案する。
- 参考スコア(独自算出の注目度): 57.69608119350651
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent extensions of 3D Gaussian Splatting (3DGS) to dynamic scenes achieve high-quality novel view synthesis by using neural networks to predict the time-varying deformation of each Gaussian. However, performing per-Gaussian neural inference at every frame poses a significant bottleneck, limiting rendering speed and increasing memory and compute requirements. In this paper, we present Speedy Deformable 3D Gaussian Splatting (SpeeDe3DGS), a general pipeline for accelerating the rendering speed of dynamic 3DGS and 4DGS representations by reducing neural inference through two complementary techniques. First, we propose a temporal sensitivity pruning score that identifies and removes Gaussians with low contribution to the dynamic scene reconstruction. We also introduce an annealing smooth pruning mechanism that improves pruning robustness in real-world scenes with imprecise camera poses. Second, we propose GroupFlow, a motion analysis technique that clusters Gaussians by trajectory similarity and predicts a single rigid transformation per group instead of separate deformations for each Gaussian. Together, our techniques accelerate rendering by $10.37\times$, reduce model size by $7.71\times$, and shorten training time by $2.71\times$ on the NeRF-DS dataset. SpeeDe3DGS also improves rendering speed by $4.20\times$ and $58.23\times$ on the D-NeRF and HyperNeRF vrig datasets. Our methods are modular and can be integrated into any deformable 3DGS or 4DGS framework.
- Abstract(参考訳): 動的シーンへの3次元ガウススティング(3DGS)の最近の拡張は、ニューラルネットワークを用いて各ガウスの時間変化変形を予測することによって、高品質な新規ビュー合成を実現する。
しかしながら、ガウス毎のニューラルネットワークを各フレームで実行することは、レンダリング速度を制限し、メモリと計算要求を増大させる、重大なボトルネックとなる。
本稿では,動的3DGSおよび4DGS表現のレンダリング速度を2つの相補的手法により低減し,高速化する汎用パイプラインであるSpeedy Deformable 3D Gaussian Splatting(SpeeDe3DGS)を提案する。
まず,動的シーン再構成に低貢献のガウス人を識別・除去する時間感度プルーニングスコアを提案する。
また,不正確なカメラポーズを施した実世界のシーンにおけるプルーニングロバスト性を向上するアニーリングスムーズプルーニング機構も導入した。
第2に,ガウス群を軌跡類似性によりクラスタリングし,各ガウス群に対して個別の変形ではなく,群ごとに1つの剛性変換を予測するグループフローを提案する。
共に、我々の技術はレンダリングを10.37ドル、モデルサイズを7.71ドル、トレーニング時間を2.71ドル、NeRF-DSデータセットを2.71ドルに短縮します。
SpeeDe3DGSはまた、D-NeRFおよびHyperNeRF vrigデータセットのレンダリング速度を4.20\times$と58.23\times$で改善している。
私たちのメソッドはモジュール化されており、変形可能な3DGSや4DGSフレームワークに統合することができます。
関連論文リスト
- Disentangled 4D Gaussian Splatting: Towards Faster and More Efficient Dynamic Scene Rendering [12.27734287104036]
2次元画像から動的シーンを合成する新アンタングルビュー合成(NVS)は重要な課題である。
時間的および空間的変形を両立させる新しい表現・レンダリング手法であるDisentangled 4D Gaussianting(Disentangled4DGS)を導入する。
提案手法は,3090 GPU上での1352times1014$の解像度で,343FPSの平均レンダリング速度を実現している。
論文 参考訳(メタデータ) (2025-03-28T05:46:02Z) - Speedy-Splat: Fast 3D Gaussian Splatting with Sparse Pixels and Sparse Primitives [60.217580865237835]
3D Gaussian Splatting (3D-GS)は、3D Gaussian のパラメトリック点雲としてシーンをモデル化することで、新しいビューをリアルタイムにレンダリングすることのできる最近の3Dシーン再構築技術である。
レンダリング速度を大幅に向上させるために、3D-GSにおける2つの重要な非効率を同定し、対処する。
われわれのSpeedy-Splatアプローチはこれらの技術を組み合わせて、Mip-NeRF 360、Turps & Temples、Deep Blendingのデータセットから得られる、劇的な$mathit6.71timesで平均レンダリング速度を加速する。
論文 参考訳(メタデータ) (2024-11-30T20:25:56Z) - MEGA: Memory-Efficient 4D Gaussian Splatting for Dynamic Scenes [49.36091070642661]
本稿では,4DGSのためのメモリ効率フレームワークを提案する。
TechnicolorとNeural 3D Videoのデータセットで約190$times$と125$times$のストレージ削減を実現している。
レンダリング速度とシーン表現の品質を維持し、フィールドに新しい標準を設定する。
論文 参考訳(メタデータ) (2024-10-17T14:47:08Z) - PUP 3D-GS: Principled Uncertainty Pruning for 3D Gaussian Splatting [59.277480452459315]
本研究では,視覚的忠実度と前景の細部を高い圧縮比で保持する原理的感度プルーニングスコアを提案する。
また,トレーニングパイプラインを変更することなく,事前訓練した任意の3D-GSモデルに適用可能な複数ラウンドプルーファインパイプラインを提案する。
論文 参考訳(メタデータ) (2024-06-14T17:53:55Z) - Gaussian-Flow: 4D Reconstruction with Dynamic 3D Gaussian Particle [9.082693946898733]
高速な動的シーン再構成と,マルチビューおよびモノクロビデオからのリアルタイムレンダリングのための新しいポイントベースアプローチを提案する。
学習速度の遅さとレンダリング速度によって妨げられるNeRFベースのアプローチとは対照的に,我々はポイントベース3Dガウススプラッティング(3DGS)の最近の進歩を活用している。
提案手法は,フレームごとの3DGSモデリングと比較して,5倍のトレーニング速度を実現し,大幅な効率向上を実現している。
論文 参考訳(メタデータ) (2023-12-06T11:25:52Z) - 4D Gaussian Splatting for Real-Time Dynamic Scene Rendering [103.32717396287751]
本研究では,動的シーンの全体像として4D-GS(Gaussian Splatting)を提案する。
HexPlaneにインスパイアされたニューラルボクセル符号化アルゴリズムは、4Dニューラルボクセルの機能を効率的に構築するために提案されている。
我々の4D-GS法は、高解像度の82 FPSで、3090 GPUで800$times$800の解像度でリアルタイムレンダリングを実現する。
論文 参考訳(メタデータ) (2023-10-12T17:21:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。