論文の概要: MAMBO: High-Resolution Generative Approach for Mammography Images
- arxiv url: http://arxiv.org/abs/2506.08677v1
- Date: Tue, 10 Jun 2025 10:37:21 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-11 15:11:42.285867
- Title: MAMBO: High-Resolution Generative Approach for Mammography Images
- Title(参考訳): MAMBO:マンモグラフィ画像の高分解能生成手法
- Authors: Milica Škipina, Nikola Jovišić, Nicola Dall'Asen, Vanja Švenda, Anil Osman Tur, Slobodan Ilić, Elisa Ricci, Dubravko Ćulibrk,
- Abstract要約: 本報告では,MAMmography ensemBle mOdel (MAMBO)について述べる。
この思慮深い設計により、MAMBOは最大3840×3840ピクセルの非常にリアルなマンモグラフィを生成することができる。
数値および放射線学の検証を含む実験は、画像生成、超解像、異常検出におけるMAMBOの能力を評価する。
- 参考スコア(独自算出の注目度): 9.945691104397845
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Mammography is the gold standard for the detection and diagnosis of breast cancer. This procedure can be significantly enhanced with Artificial Intelligence (AI)-based software, which assists radiologists in identifying abnormalities. However, training AI systems requires large and diverse datasets, which are often difficult to obtain due to privacy and ethical constraints. To address this issue, the paper introduces MAMmography ensemBle mOdel (MAMBO), a novel patch-based diffusion approach designed to generate full-resolution mammograms. Diffusion models have shown breakthrough results in realistic image generation, yet few studies have focused on mammograms, and none have successfully generated high-resolution outputs required to capture fine-grained features of small lesions. To achieve this, MAMBO integrates separate diffusion models to capture both local and global (image-level) contexts. The contextual information is then fed into the final patch-based model, significantly aiding the noise removal process. This thoughtful design enables MAMBO to generate highly realistic mammograms of up to 3840x3840 pixels. Importantly, this approach can be used to enhance the training of classification models and extended to anomaly detection. Experiments, both numerical and radiologist validation, assess MAMBO's capabilities in image generation, super-resolution, and anomaly detection, highlighting its potential to enhance mammography analysis for more accurate diagnoses and earlier lesion detection.
- Abstract(参考訳): マンモグラフィーは乳癌の検出と診断のための金の標準である。
この手順は、放射線学者が異常を識別するのを助ける人工知能(AI)ベースのソフトウェアで著しく強化することができる。
しかし、AIシステムのトレーニングには大規模で多様なデータセットが必要である。
そこで本研究では,MAMmography ensemBle mOdel (MAMBO)を提案する。
拡散モデルは、現実的な画像生成において画期的な結果を示しているが、マンモグラムに焦点を当てた研究は少ない。
これを実現するため、MAMBOは異なる拡散モデルを統合し、局所的およびグローバルな(イメージレベルの)コンテキストをキャプチャする。
その後、コンテキスト情報は最終パッチベースのモデルに入力され、ノイズ除去プロセスを著しく支援する。
この思慮深い設計により、MAMBOは最大3840×3840ピクセルの非常にリアルなマンモグラフィを生成することができる。
重要なことに、このアプローチは分類モデルのトレーニングを強化し、異常検出にまで拡張するために使用することができる。
MAMBOの画像生成、超解像、異常検出における能力を評価し、より正確な診断と早期病変検出のためのマンモグラフィー解析を強化する可能性を強調した。
関連論文リスト
- A Unified Model for Compressed Sensing MRI Across Undersampling Patterns [69.19631302047569]
様々な計測アンサンプパターンと画像解像度に頑健な統合MRI再構成モデルを提案する。
我々のモデルは、拡散法よりも600$times$高速な推論で、最先端CNN(End-to-End VarNet)の4dBでSSIMを11%改善し、PSNRを4dB改善する。
論文 参考訳(メタデータ) (2024-10-05T20:03:57Z) - MAEDiff: Masked Autoencoder-enhanced Diffusion Models for Unsupervised
Anomaly Detection in Brain Images [40.89943932086941]
脳画像における教師なし異常検出のためのMasked Autoencoder-enhanced Diffusion Model (MAEDiff)を提案する。
MAEDiffは、階層的なパッチ分割を含む。上層パッチを重畳して健全なイメージを生成し、サブレベルパッチで動作するマスク付きオートエンコーダに基づくメカニズムを実装し、未通知領域の状態を高める。
論文 参考訳(メタデータ) (2024-01-19T08:54:54Z) - Diffusion Models for Counterfactual Generation and Anomaly Detection in Brain Images [39.94162291765236]
病気の画像の健全なバージョンを生成し,それを用いて画素単位の異常マップを得るための弱教師付き手法を提案する。
健常者を対象にした拡散モデルを用いて, サンプリングプロセスの各ステップで拡散拡散確率モデル (DDPM) と拡散拡散確率モデル (DDIM) を組み合わせる。
論文 参考訳(メタデータ) (2023-08-03T21:56:50Z) - On Sensitivity and Robustness of Normalization Schemes to Input
Distribution Shifts in Automatic MR Image Diagnosis [58.634791552376235]
深層学習(DL)モデルは、再構成画像を入力として、複数の疾患の診断において最先端のパフォーマンスを達成した。
DLモデルは、トレーニングとテストフェーズ間の入力データ分布の変化につながるため、さまざまなアーティファクトに敏感である。
本稿では,グループ正規化やレイヤ正規化といった他の正規化手法を用いて,画像のさまざまなアーチファクトに対して,モデル性能にロバスト性を注入することを提案する。
論文 参考訳(メタデータ) (2023-06-23T03:09:03Z) - Unsupervised Anomaly Detection in Medical Images Using Masked Diffusion
Model [7.116982044576858]
Masked Image Modeling (MIM) と Masked Frequency Modeling (MFM) は、モデルがラベルのないデータから視覚表現を学習できるようにする自己教師型アプローチである。
腫瘍と多発性硬化症病変を含むデータセットについて検討した。
論文 参考訳(メタデータ) (2023-05-31T14:04:11Z) - Unsupervised anomaly localization in high-resolution breast scans using deep pluralistic image completion [5.911215493148418]
デジタル乳房共生(DBT)における腫瘍自動検出は, 天然腫瘍の出現率, 乳房組織の変化, 高分解能のため難しい課題である。
機械学習におけるほとんどの異常なローカライゼーション研究は、非医療的なデータセットに焦点を当てている。
論文 参考訳(メタデータ) (2023-05-04T18:28:09Z) - Patched Diffusion Models for Unsupervised Anomaly Detection in Brain MRI [55.78588835407174]
本稿では,正常脳解剖のパッチベース推定法として拡散モデルの生成タスクを再構築する手法を提案する。
腫瘍と多発性硬化症について検討し,既存のベースラインと比較して25.1%の改善がみられた。
論文 参考訳(メタデータ) (2023-03-07T09:40:22Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
ディープラーニングは、病気の識別性能を改善するための最も強力なコンピュータ支援診断技術となった。
胸部X線撮影では、大規模データの注釈付けには専門的なドメイン知識が必要で、時間を要する。
本論文では、単一モデルにおける疾患同定性能を改善するために、複数対1の分布学習(MODL)とK-nearest neighbor smoothing(KNNS)手法を提案する。
論文 参考訳(メタデータ) (2021-02-26T02:29:30Z) - MammoGANesis: Controlled Generation of High-Resolution Mammograms for
Radiology Education [0.0]
我々は,512×512高分解能マンモグラムを合成するために,GAN(Generative Adversarial Network)を訓練する。
結果として得られるモデルは、教師なしの高レベルの特徴の分離につながる。
両盲検で平均AUC0.54を達成し,医療関連マンモグラムの生成能力を示す。
論文 参考訳(メタデータ) (2020-10-11T06:47:56Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
磁気共鳴画像(MRI)の異常検出は教師なし手法で行うことができる。
本研究では,変分オートエンコーダの潜伏空間における相似関数の計算に基づいて,腫瘍検出のためのスライスワイズ半教師法を提案する。
本研究では,高解像度画像上でのモデルをトレーニングし,再現の質を向上させることにより,異なるベースラインに匹敵する結果が得られることを示す。
論文 参考訳(メタデータ) (2020-07-24T14:02:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。