論文の概要: EDINET-Bench: Evaluating LLMs on Complex Financial Tasks using Japanese Financial Statements
- arxiv url: http://arxiv.org/abs/2506.08762v1
- Date: Tue, 10 Jun 2025 13:03:36 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-11 15:11:42.472502
- Title: EDINET-Bench: Evaluating LLMs on Complex Financial Tasks using Japanese Financial Statements
- Title(参考訳): EDINET-Bench:日本の財務諸表を用いた複雑な金融課題におけるLCMの評価
- Authors: Issa Sugiura, Takashi Ishida, Taro Makino, Chieko Tazuke, Takanori Nakagawa, Kosuke Nakago, David Ha,
- Abstract要約: EDINET-Benchは,大規模言語モデル(LLM)の性能を評価するための,オープンソースの日本語金融ベンチマークである。
我々の実験は、最先端のLLMでさえも、不正検出と利益予測のためのバイナリ分類において、ロジスティック回帰よりもわずかに優れた性能を発揮していることを示している。
我々のデータセット、ベンチマーク構築コード、評価コードは、LLMによる将来の金融研究を促進するために公開されています。
- 参考スコア(独自算出の注目度): 7.259647868714988
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Financial analysis presents complex challenges that could leverage large language model (LLM) capabilities. However, the scarcity of challenging financial datasets, particularly for Japanese financial data, impedes academic innovation in financial analytics. As LLMs advance, this lack of accessible research resources increasingly hinders their development and evaluation in this specialized domain. To address this gap, we introduce EDINET-Bench, an open-source Japanese financial benchmark designed to evaluate the performance of LLMs on challenging financial tasks including accounting fraud detection, earnings forecasting, and industry prediction. EDINET-Bench is constructed by downloading annual reports from the past 10 years from Japan's Electronic Disclosure for Investors' NETwork (EDINET) and automatically assigning labels corresponding to each evaluation task. Our experiments reveal that even state-of-the-art LLMs struggle, performing only slightly better than logistic regression in binary classification for fraud detection and earnings forecasting. These results highlight significant challenges in applying LLMs to real-world financial applications and underscore the need for domain-specific adaptation. Our dataset, benchmark construction code, and evaluation code is publicly available to facilitate future research in finance with LLMs.
- Abstract(参考訳): 財務分析は、大規模言語モデル(LLM)の能力を活用できる複雑な課題を提示する。
しかし、特に日本の金融データにおいて、挑戦的な金融データセットの不足は、金融分析における学術的革新を妨げている。
LLMが進歩するにつれて、アクセス可能な研究資源の欠如が、この専門分野における開発と評価を妨げている。
このギャップに対処するため,会計不正検出,収益予測,産業予測など,経営上の課題に対するLCMのパフォーマンス評価を目的とした,オープンソースの金融ベンチマークであるEDINET-Benchを紹介した。
EDINET-Benchは、日本のElectronic Disclosure for investors' NETwork(EDINET)から過去10年間の年次レポートをダウンロードし、各評価タスクに対応するラベルを自動的に割り当てることによって構築されている。
我々の実験は、最先端のLLMでさえも、不正検出と利益予測のためのバイナリ分類において、ロジスティック回帰よりもわずかに優れた性能を発揮していることを示している。
これらの結果は、LLMを現実世界の金融アプリケーションに適用する上で重要な課題を浮き彫りにし、ドメイン固有の適応の必要性を浮き彫りにしている。
我々のデータセット、ベンチマーク構築コード、評価コードは、LLMによる将来の金融研究を促進するために公開されています。
関連論文リスト
- Bridging Language Models and Financial Analysis [49.361943182322385]
大規模言語モデル(LLM)の急速な進歩は、自然言語処理における変換可能性の解放をもたらした。
財務データは、しばしばテキストコンテンツ、数値表、および視覚チャートの複雑な関係に埋め込まれる。
LLM研究における急速なイノベーションのペースにもかかわらず、金融業界における彼らの実践的採用には大きなギャップが残っている。
論文 参考訳(メタデータ) (2025-03-14T01:35:20Z) - FinanceQA: A Benchmark for Evaluating Financial Analysis Capabilities of Large Language Models [0.0]
FinanceQAは、LLMのパフォーマンスを実世界の投資業務を反映した複雑な数値分析タスクで評価するテストスイートである。
現在のLLMは、金融機関の厳密な精度要件を満たすことができず、モデルは現実的なタスクの約60%を欠いている。
その結果、このようなタスクをサポートするためには高品質なトレーニングデータが必要であることが示され、OpenAIの微調整APIを使って実験した。
論文 参考訳(メタデータ) (2025-01-30T00:06:55Z) - Auto-Generating Earnings Report Analysis via a Financial-Augmented LLM [1.3597551064547502]
本稿では,収益報告分析を自動生成する LLM の開発という,新たな課題を提案する。
我々の手法は、既存の決算報告の詳細な分析と、この目的のためにLCMを微調整するためのユニークなアプローチを含む。
広範な財務文書により、金融指導データを構築し、LLMを財務状況に適応させることを可能にした。
論文 参考訳(メタデータ) (2024-12-11T08:09:42Z) - Advancing Anomaly Detection: Non-Semantic Financial Data Encoding with LLMs [49.57641083688934]
本稿では,Large Language Models (LLM) 埋め込みを用いた財務データにおける異常検出の新しい手法を提案する。
実験により,LLMが異常検出に有用な情報をもたらし,モデルがベースラインを上回っていることが確認された。
論文 参考訳(メタデータ) (2024-06-05T20:19:09Z) - AlphaFin: Benchmarking Financial Analysis with Retrieval-Augmented Stock-Chain Framework [48.3060010653088]
我々はAlphaFinデータセットをリリースし、従来の研究データセット、リアルタイム財務データ、手書きのチェーン・オブ・プリート(CoT)データを組み合わせています。
次に、AlphaFinデータセットを使用して、金融分析タスクを効果的に処理するために、Stock-Chainと呼ばれる最先端の手法をベンチマークします。
論文 参考訳(メタデータ) (2024-03-19T09:45:33Z) - FinBen: A Holistic Financial Benchmark for Large Language Models [75.09474986283394]
FinBenは、24の財務タスクにまたがる36のデータセットを含む、最初の大規模なオープンソース評価ベンチマークである。
FinBenは、幅広いタスクとデータセット、ストックトレーディングの最初の評価、新しいエージェントと検索可能な生成(RAG)の評価、およびテキスト要約、質問応答、株式トレーディングのための3つの新しいオープンソース評価データセットを提供する。
論文 参考訳(メタデータ) (2024-02-20T02:16:16Z) - Revolutionizing Finance with LLMs: An Overview of Applications and Insights [45.660896719456886]
ChatGPTのような大規模言語モデル(LLM)はかなり進歩しており、様々な分野に適用されている。
これらのモデルは、財務報告の自動生成、市場のトレンド予測、投資家の感情分析、パーソナライズされた財務アドバイスの提供に利用されています。
論文 参考訳(メタデータ) (2024-01-22T01:06:17Z) - PIXIU: A Large Language Model, Instruction Data and Evaluation Benchmark
for Finance [63.51545277822702]
PIXIUは、命令データ付き微調整LLaMAに基づく最初の金融大規模言語モデル(LLM)を含む包括的なフレームワークである。
我々はLLaMAを細調整してFinMAを提案する。
我々は、FinMAと既存のLLMを詳細に分析し、重要な財政課題に対処する際の長所と短所を明らかにする。
論文 参考訳(メタデータ) (2023-06-08T14:20:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。