論文の概要: A PDE-Based Image Dehazing Method via Atmospheric Scattering Theory
- arxiv url: http://arxiv.org/abs/2506.08793v2
- Date: Sun, 12 Oct 2025 13:26:29 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-14 22:41:56.0931
- Title: A PDE-Based Image Dehazing Method via Atmospheric Scattering Theory
- Title(参考訳): 大気散乱理論によるPDEに基づく画像デハージング法
- Authors: Liubing Hu, Pu Wang, Guangwei Gao, Chunyan Wang, Zhuoran Zheng,
- Abstract要約: 単像脱ハージングのための新しい偏微分方程式(PDE)フレームワークを導入する。
重要なイノベーションは、前もってダークチャネルによってガイドされた適応正則化メカニズムである。
画像の忠実さを保ちながら,本手法の有効性を確認した。
- 参考スコア(独自算出の注目度): 21.305574997938685
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper introduces a novel partial differential equation (PDE) framework for single-image dehazing. We embed the atmospheric scattering model into a PDE featuring edge-preserving diffusion and a nonlocal operator to maintain both local details and global structures. A key innovation is an adaptive regularization mechanism guided by the dark channel prior, which adjusts smoothing strength based on haze density. The framework's mathematical well-posedness is rigorously established by proving the existence and uniqueness of its weak solution in $H_0^1(\Omega)$. An efficient, GPU-accelerated fixed-point solver is used for implementation. Experiments confirm our method achieves effective haze removal while preserving high image fidelity, offering a principled alternative to purely data-driven techniques.
- Abstract(参考訳): 本稿では, 単像脱ハージングのための新しい偏微分方程式(PDE)フレームワークを提案する。
大気散乱モデルをエッジ保存拡散を特徴とするPDEと非局所演算子に埋め込み,局所的詳細と大域的構造を両立させる。
鍵となる革新は、暗チャネルによって導かれる適応正則化機構であり、これはヘイズ密度に基づいて滑らかな強度を調整する。
このフレームワークの数学的健全性は、その弱解の存在と一意性を$H_0^1(\Omega)$で証明することによって厳密に確立される。
効率的なGPU加速固定点解法が実装に使用される。
実験により,画像の忠実さを保ちながら効果的なヘイズ除去を実現し,純粋にデータ駆動技術に代わる基本的手法を提供する。
関連論文リスト
- Outsourced diffusion sampling: Efficient posterior inference in latent spaces of generative models [65.71506381302815]
本稿では、$p(mathbfxmidmathbfy) propto p_theta(mathbfx)$ という形式の後続分布からサンプリングするコストを償却する。
多くのモデルや制約に対して、後部ノイズ空間はデータ空間よりも滑らかであり、償却推論により適している。
論文 参考訳(メタデータ) (2025-02-10T19:49:54Z) - Variable Selection in Convex Piecewise Linear Regression [5.366354612549172]
本稿では,凸片方向線形回帰における変数選択の解としてスパース勾配を提案する。
亜ガウス雑音下でのSpGDには非漸近局所収束解析が提供される。
論文 参考訳(メタデータ) (2024-11-04T16:19:09Z) - Conditioning diffusion models by explicit forward-backward bridging [18.358369507787742]
ジョイントモデル $pi(x, y)$ を対象とする非条件拡散モデルが与えられた場合、条件付きシミュレーション $pi(x mid y)$ を実行するためにそれを使うというのは、いまだに未解決の問題である。
本研究では,部分的なSDEブリッジに対応する拡張空間上の推論問題として,近近性拡散モデル内でのEmphexact条件付きシミュレーションを表現する。
論文 参考訳(メタデータ) (2024-05-22T16:17:03Z) - Minimax Optimality of Score-based Diffusion Models: Beyond the Density Lower Bound Assumptions [11.222970035173372]
カーネルベースのスコア推定器は$widetildeOleft(n-1 t-fracd+22(tfracd2 vee 1)rightの最適平均二乗誤差を達成する
核を用いたスコア推定器は,拡散モデルで生成した試料の分布の総変動誤差に対して,極小ガウスの下での最大平均2乗誤差を$widetildeOleft(n-1/2 t-fracd4right)$上界で達成することを示す。
論文 参考訳(メタデータ) (2024-02-23T20:51:31Z) - Efficient Sampling of Stochastic Differential Equations with Positive
Semi-Definite Models [91.22420505636006]
本稿では, ドリフト関数と拡散行列を考慮し, 微分方程式からの効率的なサンプリング問題を扱う。
1/varepsilonは$m2d log (1/varepsilon)$である。
以上の結果から,真の解がより滑らかになるにつれて,どのような凸性も必要とせず,次元の呪いを回避できることが示唆された。
論文 参考訳(メタデータ) (2023-03-30T02:50:49Z) - Improved Langevin Monte Carlo for stochastic optimization via landscape
modification [0.0]
目的関数$H$を最小にするか,あるいは目標とするGibbs分布$pi_beta0propto e-beta H$を低温からサンプリングすると,本論文では,代替ランドスケープで動作するLangevin Monte Carlo (LMC)アルゴリズムを提案し,解析する。
変換されたランドスケープのエネルギー障壁は減少し、その結果、$pif_beta,c,1$に付随する修正Log-Sobolev定数の$beta$と$M$の両方に依存することが示される。
論文 参考訳(メタデータ) (2023-02-08T10:08:37Z) - Optimal Gradient Sliding and its Application to Distributed Optimization
Under Similarity [121.83085611327654]
積 $r:=p + q$, ここで$r$は$mu$-strong convex類似性である。
エージェントの通信やローカルコールにマスターされた問題を解決する方法を提案する。
提案手法は$mathcalO(sqrtL_q/mu)$法よりもはるかにシャープである。
論文 参考訳(メタデータ) (2022-05-30T14:28:02Z) - A first-order primal-dual method with adaptivity to local smoothness [64.62056765216386]
凸凹対象 $min_x max_y f(x) + langle Ax, yrangle - g*(y)$, ここで、$f$ は局所リプシッツ勾配を持つ凸関数であり、$g$ は凸かつ非滑らかである。
主勾配ステップと2段ステップを交互に交互に行うCondat-Vuアルゴリズムの適応バージョンを提案する。
論文 参考訳(メタデータ) (2021-10-28T14:19:30Z) - On the Self-Penalization Phenomenon in Feature Selection [69.16452769334367]
カーネル群に基づく暗黙の空間性誘導機構について述べる。
アプリケーションとしては、この疎結合誘導機構を使用して、特徴選択に一貫性のあるアルゴリズムを構築します。
論文 参考訳(メタデータ) (2021-10-12T09:36:41Z) - Asymptotic Theory of $\ell_1$-Regularized PDE Identification from a
Single Noisy Trajectory [2.0299248281970956]
線形および非線形進化的偏微分方程式(PDE)の一般クラスに対する1つの雑音軌道からの支持回復を証明した。
Local-Polynomialフィルタによって定義される単一の軌道データから、$mathbfc(lambda)のサポートが基礎となるPDEに関連する真の署名サポートに$ally収束することを保証する十分な条件のセットを提供します。
論文 参考訳(メタデータ) (2021-03-12T02:23:04Z) - Linear Time Sinkhorn Divergences using Positive Features [51.50788603386766]
エントロピー正則化で最適な輸送を解くには、ベクトルに繰り返し適用される$ntimes n$ kernel matrixを計算する必要がある。
代わりに、$c(x,y)=-logdotpvarphi(x)varphi(y)$ ここで$varphi$は、地上空間から正のorthant $RRr_+$への写像であり、$rll n$である。
論文 参考訳(メタデータ) (2020-06-12T10:21:40Z) - Spectral density estimation with the Gaussian Integral Transform [91.3755431537592]
スペクトル密度作用素 $hatrho(omega)=delta(omega-hatH)$ は線形応答論において中心的な役割を果たす。
スペクトル密度を近似する近似量子アルゴリズムについて述べる。
論文 参考訳(メタデータ) (2020-04-10T03:14:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。