論文の概要: Genetic Transformer-Assisted Quantum Neural Networks for Optimal Circuit Design
- arxiv url: http://arxiv.org/abs/2506.09205v1
- Date: Tue, 10 Jun 2025 19:49:21 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-13 06:35:02.001467
- Title: Genetic Transformer-Assisted Quantum Neural Networks for Optimal Circuit Design
- Title(参考訳): 遺伝的トランスを利用した最適回路設計のための量子ニューラルネットワーク
- Authors: Haiyan Wang,
- Abstract要約: 我々はGTQNN(Genematic Transformer Assisted Quantum Neural Networks)を紹介する。
GTQNNは、トランスフォーマーエンコーダと浅い変動量子回路を組み合わせたハイブリッド学習フレームワークである。
4つのベンチマークの実験では、GTQNNは最先端の量子モデルの状態と一致するか超えている。
- 参考スコア(独自算出の注目度): 3.6953740776904924
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce Genetic Transformer Assisted Quantum Neural Networks (GTQNNs), a hybrid learning framework that combines a transformer encoder with a shallow variational quantum circuit and automatically fine tunes the circuit via the NSGA-II multi objective genetic algorithm. The transformer reduces high-dimensional classical data to a compact, qubit sized representation, while NSGA-II searches for Pareto optimal circuits that (i) maximize classification accuracy and (ii) minimize primitive gate count an essential constraint for noisy intermediate-scale quantum (NISQ) hardware. Experiments on four benchmarks (Iris, Breast Cancer, MNIST, and Heart Disease) show that GTQNNs match or exceed state of the art quantum models while requiring much fewer gates for most cases. A hybrid Fisher information analysis further reveals that the trained networks operate far from barren plateaus; the leading curvature directions increasingly align with the quantum subspace as the qubit budget grows, confirming that the transformer front end has effectively condensed the data. Together, these results demonstrate that GTQNNs deliver competitive performance with a quantum resource budget well suited to present-day NISQ devices.
- Abstract(参考訳): 我々は、トランスフォーマーエンコーダと浅変分量子回路を組み合わせたハイブリッド学習フレームワークであるGTQNNを導入し、NSGA-II多目的遺伝的アルゴリズムを介して自動的に回路を微調整する。
変換器は高次元の古典データをコンパクトな量子ビットサイズの表現に還元し、NSGA-IIはパレート最適回路を探索する。
(i)分類精度と分類精度を最大化する
第二に、ノイズの多い中間スケール量子(NISQ)ハードウェアにおいて、プリミティブゲートカウントを最小化する。
4つのベンチマーク(Iris、Breast Cancer、MNIST、Heart Disease)での実験では、GTQNNは最先端の量子モデルと一致し、ほとんどのケースではゲートをはるかに少なくする。
さらにハイブリッドフィッシャー情報分析により、トレーニングされたネットワークが不規則な高原から遠く離れた場所で動作していることが明らかとなり、量子ビットの予算が増加するにつれて、先行する曲率方向は量子部分空間とますます一致し、トランスフォーマーのフロントエンドがデータを効果的に凝縮していることを確認した。
これらの結果は、GTQNNが、現在のNISQデバイスに適した量子リソース予算で競争力を発揮することを示した。
関連論文リスト
- HQViT: Hybrid Quantum Vision Transformer for Image Classification [48.72766405978677]
本稿では,モデル性能を向上しつつ,モデルトレーニングを高速化するHybrid Quantum Vision Transformer(HQViT)を提案する。
HQViTは振幅エンコーディングによる全画像処理を導入し、位置エンコーディングを追加せずにグローバルな画像情報をよりよく保存する。
様々なコンピュータビジョンデータセットの実験により、HQViTは既存のモデルよりも優れており、最大10.9%(MNIST 10-classification task)の改善を実現している。
論文 参考訳(メタデータ) (2025-04-03T16:13:34Z) - Mitigating Errors on Superconducting Quantum Processors through Fuzzy
Clustering [38.02852247910155]
新しいQuantum Error Mitigation(QEM)技術では、Fizzy C-Meansクラスタリングを使用して測定エラーパターンを特定できる。
実 NISQ 5-qubit 量子プロセッサのサブセットとして得られた 2-qubit レジスタ上で,この手法の原理的検証を報告する。
我々は、FCMベースのQEM技術により、単一および2ビットゲートベースの量子回路の期待値が合理的に改善できることを実証した。
論文 参考訳(メタデータ) (2024-02-02T14:02:45Z) - Hybrid quantum-classical graph neural networks for tumor classification
in digital pathology [2.682579230647868]
我々は、GNNと変分量子(VQC)を組み合わせたハイブリッド量子グラフニューラルネットワーク(GNN)を作成し、乳癌のサブタイピングにおけるバイナリサブタスクを分類する。
その結果、ハイブリッド量子ニューラルネットワーク(QNN)は、重み付き精度、リコール、F1スコアの観点から、最先端の古典的グラフニューラルネットワーク(GNN)と同等であることが示された。
論文 参考訳(メタデータ) (2023-10-17T15:40:26Z) - A Hybrid Quantum-Classical Generative Adversarial Network for Near-Term
Quantum Processors [0.0]
本稿では,短期量子プロセッサのためのハイブリッド量子古典生成逆数ネットワーク(GAN)を提案する。
生成ネットワークは、量子回路を符号化する角度と変分量子アンサッツを用いて実現される。
識別器ネットワークは、多段トレーニング可能な量子回路を用いて実現される。
論文 参考訳(メタデータ) (2023-07-06T20:11:28Z) - Quantum Federated Learning with Entanglement Controlled Circuits and
Superposition Coding [44.89303833148191]
我々は、絡み合ったスリム化可能な量子ニューラルネットワーク(eSQNN)の深さ制御可能なアーキテクチャを開発する。
本稿では,eS-QNNの重畳符号化パラメータを通信する絡み合ったスリム化QFL(eSQFL)を提案する。
画像分類タスクでは、広範囲なシミュレーションがeSQFLの有効性を裏付ける。
論文 参考訳(メタデータ) (2022-12-04T03:18:03Z) - QuanGCN: Noise-Adaptive Training for Robust Quantum Graph Convolutional
Networks [124.7972093110732]
本稿では,ノード間の局所的なメッセージパッシングをクロスゲート量子演算のシーケンスで学習する量子グラフ畳み込みネットワーク(QuanGCN)を提案する。
現代の量子デバイスから固有のノイズを緩和するために、ノードの接続をスパーズするためにスパース制約を適用します。
我々のQuanGCNは、いくつかのベンチマークグラフデータセットの古典的なアルゴリズムよりも機能的に同等か、さらに優れている。
論文 参考訳(メタデータ) (2022-11-09T21:43:16Z) - Decomposition of Matrix Product States into Shallow Quantum Circuits [62.5210028594015]
テンソルネットワーク(TN)アルゴリズムは、パラメタライズド量子回路(PQC)にマッピングできる
本稿では,現実的な量子回路を用いてTN状態を近似する新しいプロトコルを提案する。
その結果、量子回路の逐次的な成長と最適化を含む1つの特定のプロトコルが、他の全ての手法より優れていることが明らかとなった。
論文 参考訳(メタデータ) (2022-09-01T17:08:41Z) - Realizing Quantum Convolutional Neural Networks on a Superconducting
Quantum Processor to Recognize Quantum Phases [2.1465372441653354]
量子ニューラルネットワークは、ユニタリ演算、測定、フィードフォワードの約束を組み合わせることで、量子状態の特定の特徴を認識するように調整され、少ない測定とエラーを許容する。
我々は、7量子ビット超伝導量子プロセッサ上で量子畳み込みニューラルネットワーク(QCNN)を実現し、非ゼロ弦順序パラメータを特徴とするスピンモデルの対称性保護位相を同定する。
その結果,QCNNは有限忠実ゲート自体で構成されているにもかかわらず,用意された状態に対する弦順パラメータの直接測定よりも位相位相を高い忠実度で認識していることがわかった。
論文 参考訳(メタデータ) (2021-09-13T12:32:57Z) - Entangling Quantum Generative Adversarial Networks [53.25397072813582]
量子生成逆数ネットワーク(量子GAN, EQ-GAN)のための新しいタイプのアーキテクチャを提案する。
EQ-GANはコヒーレントなエラーに対してさらなる堅牢性を示し、Google Sycamore超伝導量子プロセッサで実験的にEQ-GANの有効性を示す。
論文 参考訳(メタデータ) (2021-04-30T20:38:41Z) - Hybrid quantum-classical classifier based on tensor network and
variational quantum circuit [0.0]
本稿では、量子インスパイアされたテンソルネットワーク(TN)と変分量子回路(VQC)を組み合わせて教師付き学習タスクを行うハイブリッドモデルを提案する。
低結合次元の行列積状態に基づくTNは、MNISTデータセットのバイナリ分類において、VQCの入力のためのデータを圧縮する特徴抽出器としてPCAよりも優れていることを示す。
論文 参考訳(メタデータ) (2020-11-30T09:43:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。