論文の概要: Hybrid quantum-classical classifier based on tensor network and
variational quantum circuit
- arxiv url: http://arxiv.org/abs/2011.14651v1
- Date: Mon, 30 Nov 2020 09:43:59 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-06 14:33:50.924052
- Title: Hybrid quantum-classical classifier based on tensor network and
variational quantum circuit
- Title(参考訳): テンソルネットワークと変分量子回路に基づくハイブリッド量子古典分類器
- Authors: Samuel Yen-Chi Chen, Chih-Min Huang, Chia-Wei Hsing and Ying-Jer Kao
- Abstract要約: 本稿では、量子インスパイアされたテンソルネットワーク(TN)と変分量子回路(VQC)を組み合わせて教師付き学習タスクを行うハイブリッドモデルを提案する。
低結合次元の行列積状態に基づくTNは、MNISTデータセットのバイナリ分類において、VQCの入力のためのデータを圧縮する特徴抽出器としてPCAよりも優れていることを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: One key step in performing quantum machine learning (QML) on noisy
intermediate-scale quantum (NISQ) devices is the dimension reduction of the
input data prior to their encoding. Traditional principle component analysis
(PCA) and neural networks have been used to perform this task; however, the
classical and quantum layers are usually trained separately. A framework that
allows for a better integration of the two key components is thus highly
desirable. Here we introduce a hybrid model combining the quantum-inspired
tensor networks (TN) and the variational quantum circuits (VQC) to perform
supervised learning tasks, which allows for an end-to-end training. We show
that a matrix product state based TN with low bond dimensions performs better
than PCA as a feature extractor to compress data for the input of VQCs in the
binary classification of MNIST dataset. The architecture is highly adaptable
and can easily incorporate extra quantum resource when available.
- Abstract(参考訳): ノイズの多い中間スケール量子(NISQ)デバイス上で量子機械学習(QML)を実行するための重要なステップは、符号化に先立って入力データの次元削減である。
従来の原理コンポーネント分析(pca)とニューラルネットワークは、このタスクを実行するために使われてきたが、古典層と量子層は通常、別々に訓練される。
したがって、2つの主要なコンポーネントのより良い統合を可能にするフレームワークは非常に望ましい。
本稿では,量子インスパイアされたテンソルネットワーク (tn) と変分量子回路 (vqc) を組み合わせて教師あり学習タスクを行うハイブリッドモデルを提案する。
低結合次元の行列積状態に基づくTNは、MNISTデータセットのバイナリ分類において、VQCの入力のためのデータを圧縮する特徴抽出器としてPCAよりも優れていることを示す。
アーキテクチャは非常に適応性が高く、利用可能な時に余分な量子リソースを組み込むことができる。
関連論文リスト
- Quantum Transfer Learning for MNIST Classification Using a Hybrid Quantum-Classical Approach [0.0]
本研究は、画像分類タスクにおける量子コンピューティングと古典的機械学習の統合について検討する。
両パラダイムの強みを生かしたハイブリッド量子古典的アプローチを提案する。
実験結果から、ハイブリッドモデルが量子コンピューティングと古典的手法を統合する可能性を示す一方で、量子結果に基づいて訓練された最終モデルの精度は、圧縮された特徴に基づいて訓練された古典的モデルよりも低いことが示唆された。
論文 参考訳(メタデータ) (2024-08-05T22:16:27Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
我々は,コ・テンク (co-TenQu) と呼ばれる古典量子アーキテクチャを導入する。
Co-TenQuは古典的なディープニューラルネットワークを41.72%まで向上させる。
他の量子ベースの手法よりも1.9倍も優れており、70.59%少ない量子ビットを使用しながら、同様の精度を達成している。
論文 参考訳(メタデータ) (2024-02-23T14:09:41Z) - TeD-Q: a tensor network enhanced distributed hybrid quantum machine
learning framework [59.07246314484875]
TeD-Qは、量子機械学習のためのオープンソースのソフトウェアフレームワークである。
古典的な機械学習ライブラリと量子シミュレータをシームレスに統合する。
量子回路とトレーニングの進捗をリアルタイムで視覚化できるグラフィカルモードを提供する。
論文 参考訳(メタデータ) (2023-01-13T09:35:05Z) - Scalable Quantum Neural Networks for Classification [11.839990651381617]
本稿では,複数の小型量子デバイスの量子資源を協調的に利用することにより,スケーラブルな量子ニューラルネットワーク(SQNN)を実現する手法を提案する。
SQNNシステムでは、いくつかの量子デバイスが量子特徴抽出器として使われ、入力インスタンスから並列に局所的な特徴を抽出し、量子デバイスは量子予測器として機能する。
論文 参考訳(メタデータ) (2022-08-04T20:35:03Z) - QSAN: A Near-term Achievable Quantum Self-Attention Network [73.15524926159702]
SAM(Self-Attention Mechanism)は機能の内部接続を捉えるのに長けている。
短期量子デバイスにおける画像分類タスクに対して,新しい量子自己注意ネットワーク(QSAN)を提案する。
論文 参考訳(メタデータ) (2022-07-14T12:22:51Z) - When BERT Meets Quantum Temporal Convolution Learning for Text
Classification in Heterogeneous Computing [75.75419308975746]
本研究は,変分量子回路に基づく垂直連合学習アーキテクチャを提案し,テキスト分類のための量子化事前学習BERTモデルの競争性能を実証する。
目的分類実験により,提案したBERT-QTCモデルにより,SnipsおよびATIS音声言語データセットの競合実験結果が得られた。
論文 参考訳(メタデータ) (2022-02-17T09:55:21Z) - QTN-VQC: An End-to-End Learning framework for Quantum Neural Networks [71.14713348443465]
可変量子回路(VQC)上に量子埋め込みを行うためのトレーニング可能な量子テンソルネットワーク(QTN)を導入する。
QTNは、量子埋め込みの生成から出力測定まで、エンドツーエンドのパラメトリックモデルパイプライン、すなわちQTN-VQCを可能にする。
MNISTデータセットに対する我々の実験は、他の量子埋め込み手法に対する量子埋め込みに対するQTNの利点を実証している。
論文 参考訳(メタデータ) (2021-10-06T14:44:51Z) - Entangled Datasets for Quantum Machine Learning [0.0]
代わりに量子状態からなる量子データセットを使うべきだと我々は主張する。
NTangledデータセットの状態を生成するために量子ニューラルネットワークをどのように訓練するかを示す。
また、拡張性があり、量子回路によって準備された状態で構成される、別の絡み合いベースのデータセットについても検討する。
論文 参考訳(メタデータ) (2021-09-08T02:20:13Z) - Quantum Federated Learning with Quantum Data [87.49715898878858]
量子機械学習(QML)は、量子コンピューティングの発展に頼って、大規模な複雑な機械学習問題を探求する、有望な分野として登場した。
本稿では、量子データ上で動作し、量子回路パラメータの学習を分散的に共有できる初めての完全量子連合学習フレームワークを提案する。
論文 参考訳(メタデータ) (2021-05-30T12:19:27Z) - An end-to-end trainable hybrid classical-quantum classifier [0.0]
量子インスパイアされたテンソルネットワークと変分量子回路を組み合わせて教師付き学習タスクを行うハイブリッドモデルを提案する。
このアーキテクチャにより、モデルの古典的および量子的部分を同時にトレーニングすることができ、エンドツーエンドのトレーニングフレームワークを提供する。
論文 参考訳(メタデータ) (2021-02-04T05:19:54Z) - Branching Quantum Convolutional Neural Networks [0.0]
小型量子コンピュータは、大規模量子および非常に大規模な古典的データセット上での学習タスクにおいて、既に潜在的な増加を見せている。
本稿では、分岐量子畳み込みニューラルネットワークであるQCNN(bQCNN)を、かなり高い表現性で一般化する。
論文 参考訳(メタデータ) (2020-12-28T19:00:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。