Learning to Optimize Package Picking for Large-Scale, Real-World Robot Induction
- URL: http://arxiv.org/abs/2506.09765v1
- Date: Wed, 11 Jun 2025 14:04:50 GMT
- Title: Learning to Optimize Package Picking for Large-Scale, Real-World Robot Induction
- Authors: Shuai Li, Azarakhsh Keipour, Sicong Zhao, Srinath Rajagopalan, Charles Swan, Kostas E. Bekris,
- Abstract summary: We propose an ML-based framework that predicts transform adjustments as well as improving the selection of suction cups for sampled picks to enhance their success probabilities.<n>The proposed method achieves a 20% reduction in pick failure rates compared to a sampled-based pick sampling baseline, demonstrating its effectiveness in large-scale warehouse automation scenarios.
- Score: 17.521846970697535
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Warehouse automation plays a pivotal role in enhancing operational efficiency, minimizing costs, and improving resilience to workforce variability. While prior research has demonstrated the potential of machine learning (ML) models to increase picking success rates in large-scale robotic fleets by prioritizing high-probability picks and packages, these efforts primarily focused on predicting success probabilities for picks sampled using heuristic methods. Limited attention has been given, however, to leveraging data-driven approaches to directly optimize sampled picks for better performance at scale. In this study, we propose an ML-based framework that predicts transform adjustments as well as improving the selection of suction cups for multi-suction end effectors for sampled picks to enhance their success probabilities. The framework was integrated and evaluated in test workcells that resemble the operations of Amazon Robotics' Robot Induction (Robin) fleet, which is used for package manipulation. Evaluated on over 2 million picks, the proposed method achieves a 20\% reduction in pick failure rates compared to a heuristic-based pick sampling baseline, demonstrating its effectiveness in large-scale warehouse automation scenarios.
Related papers
- Is Diversity All You Need for Scalable Robotic Manipulation? [50.747150672933316]
We investigate the nuanced role of data diversity in robot learning by examining three critical dimensions-task (what to do), embodiment (which robot to use), and expert (who demonstrates)-challenging the conventional intuition of "more diverse is better"<n>We show that task diversity proves more critical than per-task demonstration quantity, benefiting transfer from diverse pre-training tasks to novel downstream scenarios.<n>We propose a distribution debiasing method to mitigate velocity ambiguity, the yielding GO-1-Pro achieves substantial performance gains of 15%, equivalent to using 2.5 times pre-training data.
arXiv Detail & Related papers (2025-07-08T17:52:44Z) - GFRIEND: Generative Few-shot Reward Inference through EfficieNt DPO [3.189559302776161]
The ability to train high-performing reward models with few-shot data is critical for enhancing the efficiency and scalability of Reinforcement Learning from Human Feedback.<n>We propose a data augmentation and expansion framework that enables generative reward models trained on small datasets to achieve comparable performance to those trained on large-scale datasets.
arXiv Detail & Related papers (2025-06-10T16:37:13Z) - Action Flow Matching for Continual Robot Learning [57.698553219660376]
Continual learning in robotics seeks systems that can constantly adapt to changing environments and tasks.<n>We introduce a generative framework leveraging flow matching for online robot dynamics model alignment.<n>We find that by transforming the actions themselves rather than exploring with a misaligned model, the robot collects informative data more efficiently.
arXiv Detail & Related papers (2025-04-25T16:26:15Z) - DARS: Dynamic Action Re-Sampling to Enhance Coding Agent Performance by Adaptive Tree Traversal [55.13854171147104]
Large Language Models (LLMs) have revolutionized various domains, including natural language processing, data analysis, and software development.<n>We present Dynamic Action Re-Sampling (DARS), a novel inference time compute scaling approach for coding agents.<n>We evaluate our approach on SWE-Bench Lite benchmark, demonstrating that this scaling strategy achieves a pass@k score of 55% with Claude 3.5 Sonnet V2.
arXiv Detail & Related papers (2025-03-18T14:02:59Z) - Sample Efficient Robot Learning in Supervised Effect Prediction Tasks [0.0]
MUSEL (Model Uncertainty for Sample-Efficient Learning) is a novel AL framework tailored for regression tasks in robotics.<n>We show that MUSEL improves both learning accuracy and sample efficiency, validating its effectiveness in learning action effects selecting informative samples.
arXiv Detail & Related papers (2024-12-03T09:48:28Z) - Hardware Aware Ensemble Selection for Balancing Predictive Accuracy and Cost [0.6486052012623046]
We introduce a hardware-aware ensemble selection approach that integrates inference time into post hoc ensembling.
By leveraging an existing framework for ensemble selection with quality diversity optimization, our method evaluates ensemble candidates for their predictive accuracy and hardware efficiency.
Our evaluation using 83 classification datasets shows that our approach sustains competitive accuracy and can significantly improve ensembles' operational efficiency.
arXiv Detail & Related papers (2024-08-05T07:30:18Z) - Learning Efficient and Fair Policies for Uncertainty-Aware Collaborative Human-Robot Order Picking [11.997524293204368]
In collaborative human-robot order picking systems, human pickers and Autonomous Mobile Robots (AMRs) travel independently through a warehouse and meet at pick locations where pickers load items onto AMRs.
We propose a novel multi-objective Deep Reinforcement Learning (DRL) approach to learn effective allocation policies to pick efficiency while also aiming to improve workload fairness amongst human pickers.
arXiv Detail & Related papers (2024-04-09T11:45:16Z) - Confidence-Controlled Exploration: Efficient Sparse-Reward Policy Learning for Robot Navigation [72.24964965882783]
Reinforcement learning (RL) is a promising approach for robotic navigation, allowing robots to learn through trial and error.<n>Real-world robotic tasks often suffer from sparse rewards, leading to inefficient exploration and suboptimal policies.<n>We introduce Confidence-Controlled Exploration (CCE), a novel method that improves sample efficiency in RL-based robotic navigation without modifying the reward function.
arXiv Detail & Related papers (2023-06-09T18:45:15Z) - Leaving the Nest: Going Beyond Local Loss Functions for
Predict-Then-Optimize [57.22851616806617]
We show that our method achieves state-of-the-art results in four domains from the literature.
Our approach outperforms the best existing method by nearly 200% when the localness assumption is broken.
arXiv Detail & Related papers (2023-05-26T11:17:45Z) - Demonstrating Large-Scale Package Manipulation via Learned Metrics of
Pick Success [12.862075198961051]
This paper demonstrates a large-scale package manipulation from unstructured piles in Amazon Robotics' Robot Induction (Robin) fleet.
The system was trained on over 394K picks and has manipulated over 200 million packages during this paper's evaluation period.
The developed learned pick quality measure ranks various pick alternatives in real-time and prioritizes the most promising ones for execution.
arXiv Detail & Related papers (2023-05-17T15:03:58Z) - Fed-CBS: A Heterogeneity-Aware Client Sampling Mechanism for Federated
Learning via Class-Imbalance Reduction [76.26710990597498]
We show that the class-imbalance of the grouped data from randomly selected clients can lead to significant performance degradation.
Based on our key observation, we design an efficient client sampling mechanism, i.e., Federated Class-balanced Sampling (Fed-CBS)
In particular, we propose a measure of class-imbalance and then employ homomorphic encryption to derive this measure in a privacy-preserving way.
arXiv Detail & Related papers (2022-09-30T05:42:56Z) - SURF: Semi-supervised Reward Learning with Data Augmentation for
Feedback-efficient Preference-based Reinforcement Learning [168.89470249446023]
We present SURF, a semi-supervised reward learning framework that utilizes a large amount of unlabeled samples with data augmentation.
In order to leverage unlabeled samples for reward learning, we infer pseudo-labels of the unlabeled samples based on the confidence of the preference predictor.
Our experiments demonstrate that our approach significantly improves the feedback-efficiency of the preference-based method on a variety of locomotion and robotic manipulation tasks.
arXiv Detail & Related papers (2022-03-18T16:50:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.