Context-Adaptive Graph Neural Networks for Next POI Recommendation
- URL: http://arxiv.org/abs/2506.10329v1
- Date: Thu, 12 Jun 2025 03:33:58 GMT
- Title: Context-Adaptive Graph Neural Networks for Next POI Recommendation
- Authors: Yu Lei, Limin Shen, Zhu Sun, Tiantian He, Yew-Soon Ong,
- Abstract summary: Next Point-of-Interest (POI) recommendation is a critical task in location-based services, aiming to predict users' next visits based on their check-in histories.<n>We propose a Context-Adaptive Graph Neural Networks (CAGNN) for next POI recommendation, which dynamically adjusts attention weights using edge-specific contextual factors.<n> Experimental results on three real-world datasets demonstrate that CAGNN consistently outperforms state-of-the-art methods.
- Score: 29.05713313255777
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Next Point-of-Interest (POI) recommendation is a critical task in location-based services, aiming to predict users' next visits based on their check-in histories. While many existing methods leverage Graph Neural Networks (GNNs) to incorporate collaborative information and improve recommendation accuracy, most of them model each type of context using separate graphs, treating different factors in isolation. This limits their ability to model the co-influence of multiple contextual factors on user transitions during message propagation, resulting in suboptimal attention weights and recommendation performance. Furthermore, they often prioritize sequential components as the primary predictor, potentially undermining the semantic and structural information encoded in the POI embeddings learned by GNNs. To address these limitations, we propose a Context-Adaptive Graph Neural Networks (CAGNN) for next POI recommendation, which dynamically adjusts attention weights using edge-specific contextual factors and enables mutual enhancement between graph-based and sequential components. Specifically, CAGNN introduces (1) a context-adaptive attention mechanism that jointly incorporates different types of contextual factors into the attention computation during graph propagation, enabling the model to dynamically capture collaborative and context-dependent transition patterns; (2) a graph-sequential mutual enhancement module, which aligns the outputs of the graph- and sequential-based modules via the KL divergence, enabling mutual enhancement of both components. Experimental results on three real-world datasets demonstrate that CAGNN consistently outperforms state-of-the-art methods. Meanwhile, theoretical guarantees are provided that our context-adaptive attention mechanism improves the expressiveness of POI representations.
Related papers
- Graph Collaborative Attention Network for Link Prediction in Knowledge Graphs [0.0]
We focus on KBGAT, a graph neural network model that leverages multi-head attention to jointly encode both entity and relation features within local neighborhood structures.<n>We introduce textbfGCAT (Graph Collaborative Attention Network), a refined model that enhances context aggregation and interaction between heterogeneous nodes.<n>Our findings highlight the advantages of attention-based architectures in capturing complex relational patterns for knowledge graph completion tasks.
arXiv Detail & Related papers (2025-07-05T08:13:09Z) - SEP-GCN: Leveraging Similar Edge Pairs with Temporal and Spatial Contexts for Location-Based Recommender Systems [0.0]
We propose SEP-GCN, a novel graph-based recommendation framework that learns from pairs of contextually similar interaction edges.<n>By identifying edge pairs that occur within similar temporal windows or geographic proximity, SEP-GCN augments the user-item graph with contextual similarity links.<n> Experiments on benchmark data sets show that SEP-GCN consistently outperforms strong baselines in both predictive accuracy and robustness.
arXiv Detail & Related papers (2025-06-19T03:48:30Z) - COMBINEX: A Unified Counterfactual Explainer for Graph Neural Networks via Node Feature and Structural Perturbations [6.894071825948456]
We propose COMBINEX, a novel GNN explainer that generates counterfactual explanations for both node and graph classification tasks.<n>Unlike prior methods, which treat structural and feature-based changes independently, COMBINEX optimally balances modifications to edges and node features.<n>This unified approach ensures minimal yet effective changes required to flip a model's prediction, resulting in realistic and interpretable counterfactuals.
arXiv Detail & Related papers (2025-02-14T12:17:24Z) - Bi-Level Graph Structure Learning for Next POI Recommendation [28.44264733067864]
Next point-of-interest (POI) recommendation aims to predict a user's next destination based on sequential check-in history and a set of POI candidates.
This paper presents a novel Bi-level Graph Structure Learning (BiGSL) for next POI recommendation.
arXiv Detail & Related papers (2024-11-02T07:40:16Z) - A Pure Transformer Pretraining Framework on Text-attributed Graphs [50.833130854272774]
We introduce a feature-centric pretraining perspective by treating graph structure as a prior.
Our framework, Graph Sequence Pretraining with Transformer (GSPT), samples node contexts through random walks.
GSPT can be easily adapted to both node classification and link prediction, demonstrating promising empirical success on various datasets.
arXiv Detail & Related papers (2024-06-19T22:30:08Z) - Towards Adaptive Neighborhood for Advancing Temporal Interaction Graph Modeling [19.831424038609462]
Temporal Graph Networks (TGNs) have demonstrated their remarkable performance in modeling temporal interaction graphs.
In this paper, we aim to enhance existing TGNs by introducing an adaptive neighborhood encoding mechanism.
We present SEAN, a flexible plug-and-play model that can be seamlessly integrated with existing TGNs.
arXiv Detail & Related papers (2024-06-14T07:57:17Z) - DGNN: Decoupled Graph Neural Networks with Structural Consistency
between Attribute and Graph Embedding Representations [62.04558318166396]
Graph neural networks (GNNs) demonstrate a robust capability for representation learning on graphs with complex structures.
A novel GNNs framework, dubbed Decoupled Graph Neural Networks (DGNN), is introduced to obtain a more comprehensive embedding representation of nodes.
Experimental results conducted on several graph benchmark datasets verify DGNN's superiority in node classification task.
arXiv Detail & Related papers (2024-01-28T06:43:13Z) - DEGREE: Decomposition Based Explanation For Graph Neural Networks [55.38873296761104]
We propose DEGREE to provide a faithful explanation for GNN predictions.
By decomposing the information generation and aggregation mechanism of GNNs, DEGREE allows tracking the contributions of specific components of the input graph to the final prediction.
We also design a subgraph level interpretation algorithm to reveal complex interactions between graph nodes that are overlooked by previous methods.
arXiv Detail & Related papers (2023-05-22T10:29:52Z) - Self-supervised Graph-based Point-of-interest Recommendation [66.58064122520747]
Next Point-of-Interest (POI) recommendation has become a prominent component in location-based e-commerce.
We propose a Self-supervised Graph-enhanced POI Recommender (S2GRec) for next POI recommendation.
In particular, we devise a novel Graph-enhanced Self-attentive layer to incorporate the collaborative signals from both global transition graph and local trajectory graphs.
arXiv Detail & Related papers (2022-10-22T17:29:34Z) - Kernel-based Substructure Exploration for Next POI Recommendation [20.799741790823425]
Point-of-Interest (POI) recommendation plays an increasingly important role in recommender systems.
Most existing methods usually merely leverage recurrent neural networks (RNNs) to explore sequential influences for recommendation.
We propose a Kernel-Based Graph Neural Network (KBGNN) for next POI recommendation, which combines the characteristics of both geographical and sequential influences.
arXiv Detail & Related papers (2022-10-08T08:36:34Z) - Position-enhanced and Time-aware Graph Convolutional Network for
Sequential Recommendations [3.286961611175469]
We propose a new deep learning-based sequential recommendation approach based on a Position-enhanced and Time-aware Graph Convolutional Network (PTGCN)
PTGCN models the sequential patterns and temporal dynamics between user-item interactions by defining a position-enhanced and time-aware graph convolution operation.
It realizes the high-order connectivity between users and items by stacking multi-layer graph convolutions.
arXiv Detail & Related papers (2021-07-12T07:34:20Z) - Jointly Cross- and Self-Modal Graph Attention Network for Query-Based
Moment Localization [77.21951145754065]
We propose a novel Cross- and Self-Modal Graph Attention Network (CSMGAN) that recasts this task as a process of iterative messages passing over a joint graph.
Our CSMGAN is able to effectively capture high-order interactions between two modalities, thus enabling a further precise localization.
arXiv Detail & Related papers (2020-08-04T08:25:24Z) - Policy-GNN: Aggregation Optimization for Graph Neural Networks [60.50932472042379]
Graph neural networks (GNNs) aim to model the local graph structures and capture the hierarchical patterns by aggregating the information from neighbors.
It is a challenging task to develop an effective aggregation strategy for each node, given complex graphs and sparse features.
We propose Policy-GNN, a meta-policy framework that models the sampling procedure and message passing of GNNs into a combined learning process.
arXiv Detail & Related papers (2020-06-26T17:03:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.