Graph Collaborative Attention Network for Link Prediction in Knowledge Graphs
- URL: http://arxiv.org/abs/2507.03947v2
- Date: Wed, 30 Jul 2025 12:47:25 GMT
- Title: Graph Collaborative Attention Network for Link Prediction in Knowledge Graphs
- Authors: Thanh Hoang-Minh,
- Abstract summary: We focus on KBGAT, a graph neural network model that leverages multi-head attention to jointly encode both entity and relation features within local neighborhood structures.<n>We introduce textbfGCAT (Graph Collaborative Attention Network), a refined model that enhances context aggregation and interaction between heterogeneous nodes.<n>Our findings highlight the advantages of attention-based architectures in capturing complex relational patterns for knowledge graph completion tasks.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Knowledge graphs offer a structured representation of real-world entities and their relationships, enabling a wide range of applications from information retrieval to automated reasoning. In this paper, we conduct a systematic comparison between traditional rule-based approaches and modern deep learning methods for link prediction. We focus on KBGAT, a graph neural network model that leverages multi-head attention to jointly encode both entity and relation features within local neighborhood structures. To advance this line of research, we introduce \textbf{GCAT} (Graph Collaborative Attention Network), a refined model that enhances context aggregation and interaction between heterogeneous nodes. Experimental results on four widely-used benchmark datasets demonstrate that GCAT not only consistently outperforms rule-based methods but also achieves competitive or superior performance compared to existing neural embedding models. Our findings highlight the advantages of attention-based architectures in capturing complex relational patterns for knowledge graph completion tasks.
Related papers
- Hierarchical Attention Models for Multi-Relational Graphs [40.143721982295915]
We present Bi-Level Attention-Based Graph Convolutional Networks (BR-GCN)
BR-GCN models use bi-level attention to learn node embeddings through (1) node-level attention, and (2) relation-level attention.
We show that BR-GCN's attention mechanism is both scalable and more effective in learning compared to state-of-the-art GNNs.
arXiv Detail & Related papers (2024-04-14T21:37:39Z) - Deep Contrastive Graph Learning with Clustering-Oriented Guidance [61.103996105756394]
Graph Convolutional Network (GCN) has exhibited remarkable potential in improving graph-based clustering.
Models estimate an initial graph beforehand to apply GCN.
Deep Contrastive Graph Learning (DCGL) model is proposed for general data clustering.
arXiv Detail & Related papers (2024-02-25T07:03:37Z) - DGNN: Decoupled Graph Neural Networks with Structural Consistency
between Attribute and Graph Embedding Representations [62.04558318166396]
Graph neural networks (GNNs) demonstrate a robust capability for representation learning on graphs with complex structures.
A novel GNNs framework, dubbed Decoupled Graph Neural Networks (DGNN), is introduced to obtain a more comprehensive embedding representation of nodes.
Experimental results conducted on several graph benchmark datasets verify DGNN's superiority in node classification task.
arXiv Detail & Related papers (2024-01-28T06:43:13Z) - CADGE: Context-Aware Dialogue Generation Enhanced with Graph-Structured Knowledge Aggregation [25.56539617837482]
A novel context-aware graph-attention model (Context-aware GAT) is proposed.
It assimilates global features from relevant knowledge graphs through a context-enhanced knowledge aggregation mechanism.
Empirical results demonstrate that our framework outperforms conventional GNN-based language models in terms of performance.
arXiv Detail & Related papers (2023-05-10T16:31:35Z) - EGRC-Net: Embedding-induced Graph Refinement Clustering Network [66.44293190793294]
We propose a novel graph clustering network called Embedding-Induced Graph Refinement Clustering Network (EGRC-Net)
EGRC-Net effectively utilizes the learned embedding to adaptively refine the initial graph and enhance the clustering performance.
Our proposed methods consistently outperform several state-of-the-art approaches.
arXiv Detail & Related papers (2022-11-19T09:08:43Z) - Automatic Relation-aware Graph Network Proliferation [182.30735195376792]
We propose Automatic Relation-aware Graph Network Proliferation (ARGNP) for efficiently searching GNNs.
These operations can extract hierarchical node/relational information and provide anisotropic guidance for message passing on a graph.
Experiments on six datasets for four graph learning tasks demonstrate that GNNs produced by our method are superior to the current state-of-the-art hand-crafted and search-based GNNs.
arXiv Detail & Related papers (2022-05-31T10:38:04Z) - Bridging the Gap between Spatial and Spectral Domains: A Unified
Framework for Graph Neural Networks [61.17075071853949]
Graph neural networks (GNNs) are designed to deal with graph-structural data that classical deep learning does not easily manage.
The purpose of this study is to establish a unified framework that integrates GNNs based on spectral graph and approximation theory.
arXiv Detail & Related papers (2021-07-21T17:34:33Z) - Deepened Graph Auto-Encoders Help Stabilize and Enhance Link Prediction [11.927046591097623]
Link prediction is a relatively under-studied graph learning task, with current state-of-the-art models based on one- or two-layers of shallow graph auto-encoder (GAE) architectures.
In this paper, we focus on addressing a limitation of current methods for link prediction, which can only use shallow GAEs and variational GAEs.
Our proposed methods innovatively incorporate standard auto-encoders (AEs) into the architectures of GAEs, where standard AEs are leveraged to learn essential, low-dimensional representations via seamlessly integrating the adjacency information and node features
arXiv Detail & Related papers (2021-03-21T14:43:10Z) - Representation Learning of Graphs Using Graph Convolutional Multilayer
Networks Based on Motifs [17.823543937167848]
mGCMN is a novel framework which utilizes node feature information and the higher order local structure of the graph.
It will greatly improve the learning efficiency of the graph neural network and promote a brand-new learning mode establishment.
arXiv Detail & Related papers (2020-07-31T04:18:20Z) - Knowledge Embedding Based Graph Convolutional Network [35.35776808660919]
This paper proposes a novel framework, namely the Knowledge Embedding based Graph Convolutional Network (KE-GCN)
KE-GCN combines the power of Graph Convolutional Network (GCN) in graph-based belief propagation and the strengths of advanced knowledge embedding methods.
Our theoretical analysis shows that KE-GCN offers an elegant unification of several well-known GCN methods as specific cases.
arXiv Detail & Related papers (2020-06-12T17:12:51Z) - Affinity Graph Supervision for Visual Recognition [35.35959846458965]
We propose a principled method to supervise the learning of weights in affinity graphs.
Our affinity supervision improves relationship recovery between objects, even without manually annotated relationship labels.
We show that affinity learning can also be applied to graphs built from mini-batches, for neural network training.
arXiv Detail & Related papers (2020-03-19T23:52:51Z) - Tensor Graph Convolutional Networks for Multi-relational and Robust
Learning [74.05478502080658]
This paper introduces a tensor-graph convolutional network (TGCN) for scalable semi-supervised learning (SSL) from data associated with a collection of graphs, that are represented by a tensor.
The proposed architecture achieves markedly improved performance relative to standard GCNs, copes with state-of-the-art adversarial attacks, and leads to remarkable SSL performance over protein-to-protein interaction networks.
arXiv Detail & Related papers (2020-03-15T02:33:21Z) - Graph Representation Learning via Graphical Mutual Information
Maximization [86.32278001019854]
We propose a novel concept, Graphical Mutual Information (GMI), to measure the correlation between input graphs and high-level hidden representations.
We develop an unsupervised learning model trained by maximizing GMI between the input and output of a graph neural encoder.
arXiv Detail & Related papers (2020-02-04T08:33:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.