論文の概要: Structure and asymptotic preserving deep neural surrogates for uncertainty quantification in multiscale kinetic equations
- arxiv url: http://arxiv.org/abs/2506.10636v1
- Date: Thu, 12 Jun 2025 12:20:53 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-13 15:37:22.72724
- Title: Structure and asymptotic preserving deep neural surrogates for uncertainty quantification in multiscale kinetic equations
- Title(参考訳): マルチスケール運動方程式における不確実性定量のための構造と漸近保存型深部神経サロゲート
- Authors: Wei Chen, Giacomo Dimarco, Lorenzo Pareschi,
- Abstract要約: パラメータを持つ運動方程式の高次元性は不確実性定量化(UQ)の計算課題を提起する
伝統的なモンテカルロサンプリング法は、空間の次元が大きくなるにつれて、緩やかな収束と高い分散に悩まされる。
ニューラルネットワークの構造と保存に基づくサロゲートモデル(SAPNN)を導入する。
SAPNNは、肯定性、保存法則、エントロピー散逸、パラメータ制限など、重要な物理特性を満たすように設計されている。
- 参考スコア(独自算出の注目度): 5.181697052513637
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The high dimensionality of kinetic equations with stochastic parameters poses major computational challenges for uncertainty quantification (UQ). Traditional Monte Carlo (MC) sampling methods, while widely used, suffer from slow convergence and high variance, which become increasingly severe as the dimensionality of the parameter space grows. To accelerate MC sampling, we adopt a multiscale control variates strategy that leverages low-fidelity solutions from simplified kinetic models to reduce variance. To further improve sampling efficiency and preserve the underlying physics, we introduce surrogate models based on structure and asymptotic preserving neural networks (SAPNNs). These deep neural networks are specifically designed to satisfy key physical properties, including positivity, conservation laws, entropy dissipation, and asymptotic limits. By training the SAPNNs on low-fidelity models and enriching them with selected high-fidelity samples from the full Boltzmann equation, our method achieves significant variance reduction while maintaining physical consistency and asymptotic accuracy. The proposed methodology enables efficient large-scale prediction in kinetic UQ and is validated across both homogeneous and nonhomogeneous multiscale regimes. Numerical results demonstrate improved accuracy and computational efficiency compared to standard MC techniques.
- Abstract(参考訳): 確率的パラメータを持つ運動方程式の高次元性は、不確実量化(UQ)に対する大きな計算上の問題を引き起こす。
伝統的なモンテカルロサンプリング法(MC)は広く用いられているが、緩やかな収束と高分散に悩まされ、パラメータ空間の次元が大きくなるにつれてますます深刻になる。
MCサンプリングを高速化するために、単純化された運動モデルから低忠実度解を利用するマルチスケール制御変分戦略を採用し、分散を低減する。
サンプリング効率をさらに向上し,基礎となる物理を保存するために,構造と漸近保存ニューラルネットワーク(SAPNN)に基づく代理モデルを導入する。
これらのディープニューラルネットワークは、肯定性、保存法則、エントロピー散逸、漸近的限界を含む重要な物理的特性を満たすように設計されている。
SAPNNを低忠実度モデルで訓練し、ボルツマン方程式から選択した高忠実度サンプルを豊かにすることにより、物理的整合性および漸近精度を維持しながら大きな分散低減を実現する。
提案手法は, 運動的UQにおける大規模予測を効果的に行うことができ, 均一性および非均一性の両方のマルチスケールレシージャで検証できる。
計算精度と計算効率は標準MC法と比較して向上した。
関連論文リスト
- KO: Kinetics-inspired Neural Optimizer with PDE Simulation Approaches [45.173398806932376]
本稿では、運動理論と偏微分方程式(PDE)シミュレーションにインスパイアされた新しい神経勾配であるKOを紹介する。
我々は、ネットワークパラメータの力学を、運動原理によって支配される粒子系の進化として再想像する。
この物理駆動のアプローチは、パラメータ凝縮の現象を緩和し、最適化中のパラメータの多様性を本質的に促進する。
論文 参考訳(メタデータ) (2025-05-20T18:00:01Z) - Deep-Unrolling Multidimensional Harmonic Retrieval Algorithms on Neuromorphic Hardware [78.17783007774295]
本稿では,高精度かつエネルギー効率の高い単発多次元高調波検索のための変換に基づくニューロモルフィックアルゴリズムの可能性について検討する。
複雑な値の畳み込み層と活性化をスパイクニューラルネットワーク(SNN)に変換する新しい手法を開発した。
変換されたSNNは、元のCNNに比べて性能が低下し、ほぼ5倍の電力効率を実現している。
論文 参考訳(メタデータ) (2024-12-05T09:41:33Z) - DiffHybrid-UQ: Uncertainty Quantification for Differentiable Hybrid
Neural Modeling [4.76185521514135]
本稿では,ハイブリッドニューラル微分可能モデルにおける有効かつ効率的な不確実性伝播と推定のための新しい手法DiffHybrid-UQを提案する。
具体的には,データノイズとてんかんの不確かさから生じるアレタリック不確かさと,モデル形状の相違やデータ空間のばらつきから生じるエピステマティック不確かさの両方を効果的に識別し,定量化する。
論文 参考訳(メタデータ) (2023-12-30T07:40:47Z) - Scalable Imaginary Time Evolution with Neural Network Quantum States [0.0]
ニューラルネットワーク量子状態(NQS)としての量子波関数の表現は、多体量子系の基底状態を見つけるための強力な変分アンサッツを提供する。
我々は、計量テンソルの計算をバイパスするアプローチを導入し、代わりにユークリッド計量を用いた一階降下にのみ依存する。
我々は,NQSのエネルギーが減少するまで最適な時間ステップを決定し,目標を固定し,適応的に安定させる。
論文 参考訳(メタデータ) (2023-07-28T12:26:43Z) - A Deep Unrolling Model with Hybrid Optimization Structure for Hyperspectral Image Deconvolution [50.13564338607482]
本稿では,DeepMixと呼ばれるハイパースペクトルデコンボリューション問題に対する新しい最適化フレームワークを提案する。
これは3つの異なるモジュール、すなわちデータ一貫性モジュール、手作りの正規化器の効果を強制するモジュール、および装飾モジュールで構成されている。
本研究は,他のモジュールの協調作業によって達成される進歩を維持するために設計された,文脈を考慮した認知型モジュールを提案する。
論文 参考訳(メタデータ) (2023-06-10T08:25:16Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
実験データから未知のパラメータを復元するために、モデルハミルトンのシミュレーションデータを模倣するために訓練されたニューラルネットワークと自動微分を組み合わせた人工知能フレームワークを開発する。
そこで本研究では, 実時間から多次元散乱データに適用可能な微分可能なモデルを1回だけ構築し, 訓練する能力について述べる。
論文 参考訳(メタデータ) (2023-04-08T07:55:36Z) - Dynamical Hyperspectral Unmixing with Variational Recurrent Neural
Networks [25.051918587650636]
MTHU(Multitemporal hyperspectral unmixing)は、ハイパースペクトル画像解析の基本的なツールである。
本稿では,変分リカレントニューラルネットワークに基づく教師なしMTHUアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-03-19T04:51:34Z) - Implicit Stochastic Gradient Descent for Training Physics-informed
Neural Networks [51.92362217307946]
物理インフォームドニューラルネットワーク(PINN)は、前方および逆微分方程式問題の解法として効果的に実証されている。
PINNは、近似すべきターゲット関数が高周波またはマルチスケールの特徴を示す場合、トレーニング障害に閉じ込められる。
本稿では,暗黙的勾配降下法(ISGD)を用いてPINNを訓練し,トレーニングプロセスの安定性を向上させることを提案する。
論文 参考訳(メタデータ) (2023-03-03T08:17:47Z) - Multi-fidelity Hierarchical Neural Processes [79.0284780825048]
多要素代理モデリングは、異なるシミュレーション出力を融合させることで計算コストを削減する。
本稿では,多階層型階層型ニューラルネットワーク(MF-HNP)を提案する。
疫学および気候モデリングタスクにおけるMF-HNPの評価を行い、精度と不確実性評価の観点から競合性能を達成した。
論文 参考訳(メタデータ) (2022-06-10T04:54:13Z) - Variational learning of quantum ground states on spiking neuromorphic
hardware [0.0]
高次元サンプリング空間と過渡自己相関は、難しい計算ボトルネックを伴うニューラルネットワークに直面する。
従来のニューラルネットワークと比較して、物理モデルデバイスは高速で効率的で本質的に並列な基板を提供する。
変動エネルギー最小化による量子スピンモデルの基底状態を表すニューロモルフィックチップの能力を示す。
論文 参考訳(メタデータ) (2021-09-30T14:39:45Z) - Multiplicative noise and heavy tails in stochastic optimization [62.993432503309485]
経験的最適化は現代の機械学習の中心であるが、その成功における役割はまだ不明である。
分散による離散乗法雑音のパラメータによく現れることを示す。
最新のステップサイズやデータを含む重要な要素について、詳細な分析を行い、いずれも最先端のニューラルネットワークモデルで同様の結果を示す。
論文 参考訳(メタデータ) (2020-06-11T09:58:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。