論文の概要: Variational learning of quantum ground states on spiking neuromorphic
hardware
- arxiv url: http://arxiv.org/abs/2109.15169v4
- Date: Thu, 25 Nov 2021 20:21:07 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-12 23:12:27.179221
- Title: Variational learning of quantum ground states on spiking neuromorphic
hardware
- Title(参考訳): スパイキングニューロモルフィックハードウェアにおける量子基底状態の変分学習
- Authors: Robert Klassert, Andreas Baumbach, Mihai A. Petrovici, Martin
G\"arttner
- Abstract要約: 高次元サンプリング空間と過渡自己相関は、難しい計算ボトルネックを伴うニューラルネットワークに直面する。
従来のニューラルネットワークと比較して、物理モデルデバイスは高速で効率的で本質的に並列な基板を提供する。
変動エネルギー最小化による量子スピンモデルの基底状態を表すニューロモルフィックチップの能力を示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent research has demonstrated the usefulness of neural networks as
variational ansatz functions for quantum many-body states. However,
high-dimensional sampling spaces and transient autocorrelations confront these
approaches with a challenging computational bottleneck. Compared to
conventional neural networks, physical-model devices offer a fast, efficient
and inherently parallel substrate capable of related forms of Markov chain
Monte Carlo sampling. Here, we demonstrate the ability of a neuromorphic chip
to represent the ground states of quantum spin models by variational energy
minimization. We develop a training algorithm and apply it to the transverse
field Ising model, showing good performance at moderate system sizes ($N\leq
10$). A systematic hyperparameter study shows that scalability to larger system
sizes mainly depends on sample quality, which is limited by temporal parameter
variations on the analog neuromorphic chip. Our work thus provides an important
step towards harnessing the capabilities of neuromorphic hardware for tackling
the curse of dimensionality in quantum many-body problems.
- Abstract(参考訳): 近年,量子多体状態における変動アンサッツ関数としてのニューラルネットワークの有用性が実証されている。
しかし、高次元サンプリング空間と過渡自己相関は、これらのアプローチに挑戦的な計算ボトルネックで直面する。
従来のニューラルネットワークと比較して、物理モデルデバイスは、マルコフ連鎖モンテカルロサンプリングの関連形態を持つ高速で効率的で本質的に並列な基板を提供する。
本稿では,変動エネルギー最小化による量子スピンモデルの基底状態を表現するためのニューロモルフィックチップの能力を示す。
トレーニングアルゴリズムを開発し、それを横フィールドIsingモデルに適用し、中程度のシステムサイズ(N\leq 10$)で優れた性能を示す。
系統的ハイパーパラメーターによる研究によると、より大きなシステムサイズへのスケーラビリティは、主にサンプルの品質に依存しており、アナログニューロモルフィックチップの時間パラメータ変動によって制限されている。
我々の研究は、量子多体問題における次元の呪いに対処するために、ニューロモルフィックハードウェアの能力を活用するための重要なステップを提供する。
関連論文リスト
- Fourier Neural Operators for Learning Dynamics in Quantum Spin Systems [77.88054335119074]
ランダム量子スピン系の進化をモデル化するためにFNOを用いる。
量子波動関数全体の2n$の代わりに、コンパクトなハミルトン観測可能集合にFNOを適用する。
論文 参考訳(メタデータ) (2024-09-05T07:18:09Z) - Paths towards time evolution with larger neural-network quantum states [17.826631514127012]
我々は、傾斜したイジングモデルにおいて、常磁性から反強磁性相への量子クエンチを考える。
両タイプのネットワークに対して、予測時間依存変動モンテカルロ法(p-tVMC)は、非計画的手法よりも優れた性能を示すことを示す。
論文 参考訳(メタデータ) (2024-06-05T15:32:38Z) - Neural Quantum States in Variational Monte Carlo Method: A Brief Summary [0.0]
スピン系に対するニューラル量子状態に基づく変分モンテカルロ法について概説する。
ニューラルネットワークは、比較的小さな計算資源を持つ比較的複雑な波動関数を表現できる。
量子状態トモグラフィでは、神経量子状態の表現法はすでに大きな成果を上げている。
論文 参考訳(メタデータ) (2024-06-03T05:55:55Z) - Coherent Feed Forward Quantum Neural Network [2.1178416840822027]
量子ニューラルネットワーク(QNN)に焦点をあてた量子機械学習は、いまだに膨大な研究分野である。
適応可能な中間層とノードの観点から,従来のFFNNの汎用性とシームレスに整合するボナフェイドQNNモデルを提案する。
本研究では,診断乳がん(Wisconsin)やクレジットカード不正検出データセットなど,さまざまなベンチマークデータセットを用いて提案モデルを検証した。
論文 参考訳(メタデータ) (2024-02-01T15:13:26Z) - Towards Neural Variational Monte Carlo That Scales Linearly with System
Size [67.09349921751341]
量子多体問題(Quantum many-body problem)は、例えば高温超伝導体のようなエキゾチックな量子現象をデミストする中心である。
量子状態を表すニューラルネットワーク(NN)と変分モンテカルロ(VMC)アルゴリズムの組み合わせは、そのような問題を解決する上で有望な方法であることが示されている。
ベクトル量子化技術を用いて,VMCアルゴリズムの局所エネルギー計算における冗長性を利用するNNアーキテクチャVector-Quantized Neural Quantum States (VQ-NQS)を提案する。
論文 参考訳(メタデータ) (2022-12-21T19:00:04Z) - Momentum Diminishes the Effect of Spectral Bias in Physics-Informed
Neural Networks [72.09574528342732]
物理インフォームドニューラルネットワーク(PINN)アルゴリズムは、偏微分方程式(PDE)を含む幅広い問題を解く上で有望な結果を示している。
彼らはしばしば、スペクトルバイアスと呼ばれる現象のために、ターゲット関数が高周波の特徴を含むとき、望ましい解に収束しない。
本研究は, 運動量による勾配降下下で進化するPINNのトレーニングダイナミクスを, NTK(Neural Tangent kernel)を用いて研究するものである。
論文 参考訳(メタデータ) (2022-06-29T19:03:10Z) - Simulating the Mott transition on a noisy digital quantum computer via
Cartan-based fast-forwarding circuits [62.73367618671969]
動的平均場理論(DMFT)は、ハバードモデルの局所グリーン関数をアンダーソン不純物のモデルにマッピングする。
不純物モデルを効率的に解くために、量子およびハイブリッド量子古典アルゴリズムが提案されている。
この研究は、ノイズの多いデジタル量子ハードウェアを用いたMott相転移の最初の計算を提示する。
論文 参考訳(メタデータ) (2021-12-10T17:32:15Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
量子力学シミュレーションのための量子アルゴリズムは、伝統的に時間進化作用素のトロッター近似の実装に基づいている。
変分量子アルゴリズムは欠かせない代替手段となり、現在のハードウェア上での小規模なシミュレーションを可能にしている。
量子ゲートコストが明らかに削減されているにもかかわらず、現在の実装における変分法は量子的優位性をもたらすことはありそうにない。
論文 参考訳(メタデータ) (2021-08-09T18:00:05Z) - Quantum-tailored machine-learning characterization of a superconducting
qubit [50.591267188664666]
我々は,量子デバイスのダイナミクスを特徴付ける手法を開発し,デバイスパラメータを学習する。
このアプローチは、数値的に生成された実験データに基づいてトレーニングされた物理に依存しないリカレントニューラルネットワークより優れている。
このデモンストレーションは、ドメイン知識を活用することで、この特徴付けタスクの正確性と効率が向上することを示す。
論文 参考訳(メタデータ) (2021-06-24T15:58:57Z) - Random Sampling Neural Network for Quantum Many-Body Problems [0.0]
本稿では,対話型多体システムのランダムサンプリング行列要素に対して,自己教師型学習手法を用いてパターン認識手法を用いたランダムサンプリングニューラルネットワーク(Random Smpling Neural Networks, RNN)を提案する。
RSNNの適用性をテストするために、横フィールドを持つIsingモデル、Fermi-Hubbardモデル、Spin-$1/2$$XXZ$モデルなど、正確に解決可能ないくつかの1Dモデルが使用されている。
論文 参考訳(メタデータ) (2020-11-10T15:52:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。