論文の概要: On the development of an AI performance and behavioural measures for teaching and classroom management
- arxiv url: http://arxiv.org/abs/2506.11143v1
- Date: Wed, 11 Jun 2025 04:52:50 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-16 17:50:49.50826
- Title: On the development of an AI performance and behavioural measures for teaching and classroom management
- Title(参考訳): 教師と教室管理のためのAIパフォーマンスと行動尺度の開発について
- Authors: Andreea I. Niculescu, Jochen Ehnen, Chen Yi, Du Jiawei, Tay Chiat Pin, Joey Tianyi Zhou, Vigneshwaran Subbaraju, Teh Kah Kuan, Tran Huy Dat, John Komar, Gi Soong Chee, Kenneth Kwok,
- Abstract要約: 本稿では,授業のダイナミクスを解析するためのAI駆動型尺度の開発に焦点をあてた2年間の研究プロジェクトについて述べる。
主な成果としては、キュレートされたオーディオビジュアルデータセット、新しい行動測定、概念実証教育レビューダッシュボードなどがある。
- 参考スコア(独自算出の注目度): 29.68201271068342
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents a two-year research project focused on developing AI-driven measures to analyze classroom dynamics, with particular emphasis on teacher actions captured through multimodal sensor data. We applied real-time data from classroom sensors and AI techniques to extract meaningful insights and support teacher development. Key outcomes include a curated audio-visual dataset, novel behavioral measures, and a proof-of-concept teaching review dashboard. An initial evaluation with eight researchers from the National Institute for Education (NIE) highlighted the system's clarity, usability, and its non-judgmental, automated analysis approach -- which reduces manual workloads and encourages constructive reflection. Although the current version does not assign performance ratings, it provides an objective snapshot of in-class interactions, helping teachers recognize and improve their instructional strategies. Designed and tested in an Asian educational context, this work also contributes a culturally grounded methodology to the growing field of AI-based educational analytics.
- Abstract(参考訳): 本稿では,マルチモーダルセンサデータから取得した教師の行動に着目し,授業のダイナミクスをAIで分析する手法の開発に焦点をあてた2年間の研究プロジェクトを提案する。
教室のセンサとAI技術からリアルタイムデータを応用し、意味のある洞察を抽出し、教師の育成を支援する。
主な成果としては、キュレートされたオーディオビジュアルデータセット、新しい行動測定、概念実証教育レビューダッシュボードなどがある。
国立教育研究所(NIE)の8人の研究者による最初の評価では、システムの明快さ、ユーザビリティ、および非判断的自動分析アプローチが強調された。
現在のバージョンではパフォーマンス評価を割り当てていないが、クラス内インタラクションの客観的スナップショットを提供し、教師が授業戦略を認識し改善するのに役立つ。
アジアの教育の文脈で設計され、テストされたこの研究は、AIベースの教育分析の分野の成長に文化的に根ざした方法論にも貢献する。
関連論文リスト
- A Practical Guide for Supporting Formative Assessment and Feedback Using Generative AI [0.0]
大規模言語モデル(LLM)は、学生、教師、同僚が「学習者が行く場所」、「学習者が現在いる場所」、「学習者を前進させる方法」を理解するのに役立つ。
本総説では,LSMを形式的評価に統合するための総合的な基盤を提供する。
論文 参考訳(メタデータ) (2025-05-29T12:52:43Z) - Evaluating Pedagogical Incentives in Undergraduate Computing: A Mixed Methods Approach Using Learning Analytics [0.0]
本稿では,ユニヴァーシティ・カレッジ・ロンドンにおける1年目のコンピュータ・モジュールにおける新たな教育的インセンティブの効果を評価する。
我々は、学習分析と質的データを組み合わせて、これらのインセンティブの有効性を学生のエンゲージメントを高めるために、混合手法を用いて評価する。
本稿では,データ駆動型客観分析を学生の視点と統合した,生徒のエンゲージメントに対する解釈可能かつ行動可能なモデルを提案する。
論文 参考訳(メタデータ) (2024-03-13T16:39:38Z) - Enhancing Instructional Quality: Leveraging Computer-Assisted Textual
Analysis to Generate In-Depth Insights from Educational Artifacts [13.617709093240231]
本研究では、人工知能(AI)と機械学習(ML)が教育内容、教師の談話、学生の反応を分析して教育改善を促進する方法について検討する。
私たちは、教師のコーチング、学生のサポート、コンテンツ開発など、AI/ML統合が大きな利点をもたらす重要な領域を特定します。
本稿では,AI/ML技術と教育的目標との整合性の重要性を強調し,その教育的可能性を実現する。
論文 参考訳(メタデータ) (2024-03-06T18:29:18Z) - Revisiting Self-supervised Learning of Speech Representation from a
Mutual Information Perspective [68.20531518525273]
我々は、情報理論の観点から、既存の自己教師型音声の手法を詳しく検討する。
我々は線形プローブを用いて、対象情報と学習された表現の間の相互情報を推定する。
我々は、ラベルを使わずに、データの異なる部分間の相互情報を見積もる自己教師型の表現を評価する可能性を探る。
論文 参考訳(メタデータ) (2024-01-16T21:13:22Z) - Integrating AI and Learning Analytics for Data-Driven Pedagogical Decisions and Personalized Interventions in Education [0.2812395851874055]
本研究では,革新的な学習分析ツールの概念化,開発,展開について検討する。
学生のストレスレベル、好奇心、混乱、扇動、トピックの嗜好、学習方法などの重要なデータポイントを分析し、学習環境の総合的なビューを提供する。
この研究は、パーソナライズされたデータ駆動型教育を形成する上で、AIが果たす役割を浮き彫りにする。
論文 参考訳(メタデータ) (2023-12-15T06:00:26Z) - Towards Goal-oriented Intelligent Tutoring Systems in Online Education [69.06930979754627]
目標指向知能チューニングシステム(GITS)という新しいタスクを提案する。
GITSは,演習や評価のカスタマイズを戦略的に計画することで,学生の指定概念の習得を可能にすることを目的としている。
PAI(Planning-Assessment-Interaction)と呼ばれるグラフに基づく新しい強化学習フレームワークを提案する。
論文 参考訳(メタデータ) (2023-12-03T12:37:16Z) - Empowering Private Tutoring by Chaining Large Language Models [87.76985829144834]
本研究は,最先端の大規模言語モデル(LLM)を活用した,本格的な知的チューリングシステムの開発を探求する。
このシステムは、相互に接続された3つのコアプロセス(相互作用、反射、反応)に分けられる。
各プロセスは LLM ベースのツールと動的に更新されたメモリモジュールによって実装される。
論文 参考訳(メタデータ) (2023-09-15T02:42:03Z) - Distantly-Supervised Named Entity Recognition with Adaptive Teacher
Learning and Fine-grained Student Ensemble [56.705249154629264]
NERモデルの堅牢性を改善するために,自己学習型教員学生フレームワークを提案する。
本稿では,2つの教員ネットワークからなる適応型教員学習を提案する。
微粒な学生アンサンブルは、教師モデルの各フラグメントを、生徒の対応するフラグメントの時間移動平均で更新し、各モデルフラグメントのノイズに対する一貫した予測を強化する。
論文 参考訳(メタデータ) (2022-12-13T12:14:09Z) - Modelling Assessment Rubrics through Bayesian Networks: a Pragmatic Approach [40.06500618820166]
本稿では,学習者モデルを直接評価ルーリックから導出する手法を提案する。
本稿では,コンピュータ思考のスキルをテストするために開発された活動の人的評価を自動化するために,この手法を適用する方法について述べる。
論文 参考訳(メタデータ) (2022-09-07T10:09:12Z) - Unsupervised Domain Adaptive Person Re-Identification via Human Learning
Imitation [67.52229938775294]
近年、研究者は、異なる人物の再識別データセット間のドメインギャップを減らすために、教師学生フレームワークを彼らの手法に活用することを提案している。
近年の教員中心の枠組みに基づく手法に着想を得て,異なる側面から人間の学習過程を模倣するためのさらなる探究を提案する。
論文 参考訳(メタデータ) (2021-11-28T01:14:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。