論文の概要: Mapping and Scheduling Spiking Neural Networks On Segmented Ladder Bus Architectures
- arxiv url: http://arxiv.org/abs/2506.11286v1
- Date: Thu, 12 Jun 2025 20:44:50 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-16 17:50:49.579179
- Title: Mapping and Scheduling Spiking Neural Networks On Segmented Ladder Bus Architectures
- Title(参考訳): セグメンテッドラダーバスアーキテクチャ上でのスパイクニューラルネットワークのマッピングとスケジューリング
- Authors: Phu Khanh Huynh, Francky Catthoor, Anup Das,
- Abstract要約: 大規模ニューロモルフィックアーキテクチャは、共有相互接続を用いてスパイクを伝達するコンピューティングタイルで構成されている。
これらの特性は、アイドル期間中に最小限の電力を消費しながら、高活性バーストを処理するために最適化された相互接続を必要とする。
本稿では,セグメンテッド・ラダーバスに合わせたシナリオ対応制御面の設計手法を提案する。
- 参考スコア(独自算出の注目度): 2.732919960807485
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large-scale neuromorphic architectures consist of computing tiles that communicate spikes using a shared interconnect. The communication patterns in these systems are inherently sparse, asynchronous, and localized, as neural activity is characterized by temporal sparsity with occasional bursts of high traffic. These characteristics require optimized interconnects to handle high-activity bursts while consuming minimal power during idle periods. Among the proposed interconnect solutions, the dynamic segmented bus has gained attention due to its structural simplicity, scalability, and energy efficiency. Since the benefits of a dynamic segmented bus stem from its simplicity, it is essential to develop a streamlined control plane that can scale efficiently with the network. In this paper, we present a design methodology for a scenario-aware control plane tailored to a segmented ladder bus, with the aim of minimizing control overhead and optimizing energy and area utilization. We evaluated our approach using a combination of FPGA implementation and software simulation to assess scalability. The results demonstrated that our design process effectively reduces the control plane's area footprint compared to the data plane while maintaining scalability with network size.
- Abstract(参考訳): 大規模ニューロモルフィックアーキテクチャは、共有相互接続を用いてスパイクを伝達するコンピューティングタイルで構成されている。
これらのシステム内の通信パターンは本質的に疎らで、非同期で、局所的であり、神経活動は時空間の間隔と時空間の高トラフィックのバーストによって特徴づけられる。
これらの特性は、アイドル期間中に最小限の電力を消費しながら、高活性バーストを処理するために最適化された相互接続を必要とする。
提案した相互接続ソリューションの中では, 構造的単純性, スケーラビリティ, エネルギー効率などにより, 動的セグメントバスが注目されている。
動的セグメンテーションバスの利点は、その単純さに起因しているため、ネットワークで効率的にスケールできる合理化制御面を開発することが不可欠である。
本稿では,制御オーバーヘッドの最小化とエネルギーと面積利用の最適化を目的とした,セグメンテーション付きラダーバスに適したシナリオ対応制御面の設計手法を提案する。
FPGAの実装とソフトウェアシミュレーションを組み合わせて,スケーラビリティの評価を行った。
その結果,ネットワークサイズで拡張性を維持しつつ,データプレーンに比べて制御面の面積フットプリントを効果的に削減できることを示した。
関連論文リスト
- World Model-Based Learning for Long-Term Age of Information Minimization in Vehicular Networks [53.98633183204453]
本稿では,車載ネットワークにおけるパケット完全性認識情報(CAoI)の年齢を最小化するために,新しい世界モデルに基づく学習フレームワークを提案する。
mmWave V2X環境の動的モデルを共同で学習し、リンクスケジューリングの方法を学ぶための軌跡を想像するために使用する世界モデルフレームワークを提案する。
特に、長期的な政策は環境相互作用の代わりに、異なる想像軌道で学習される。
論文 参考訳(メタデータ) (2025-05-03T06:23:18Z) - Brain-Inspired Decentralized Satellite Learning in Space Computing Power Networks [42.67808523367945]
Space Computing Power Networks (Space-CPN) は、衛星の計算能力を調整し、オンボードのデータ処理を可能にする、有望なアーキテクチャとして登場した。
本稿では,ニューロモルフィックコンピューティングアーキテクチャがサポートするスパイクニューラルネットワーク(SNN)をオンボードデータ処理に適用することを提案する。
我々は分散型ニューロモルフィック学習フレームワークを提案し、通信効率の良い平面間モデルアグリゲーション法を開発した。
論文 参考訳(メタデータ) (2025-01-27T12:29:47Z) - SCoTT: Strategic Chain-of-Thought Tasking for Wireless-Aware Robot Navigation in Digital Twins [78.53885607559958]
無線対応経路計画フレームワークであるSCoTTを提案する。
SCoTT は DP-WA* の2% 以内で経路ゲインを達成し, 連続的に短い軌道を生成できることを示す。
また,ガゼボシミュレーションにおいて,SCoTTをROSノードとして配置することにより,本手法の実用性を示す。
論文 参考訳(メタデータ) (2024-11-27T10:45:49Z) - Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
タスク指向エッジコンピューティングは、データ分析をエッジにシフトすることで、この問題に対処する。
既存の手法は、高いモデル性能と低いリソース消費のバランスをとるのに苦労している。
ニューラルネットワークアーキテクチャを最適化する新しい協調設計フレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-29T19:02:54Z) - STGformer: Efficient Spatiotemporal Graph Transformer for Traffic Forecasting [11.208740750755025]
交通はスマートシティマネジメントの基盤であり、効率的なアロケーションと交通計画を可能にしている。
ディープラーニングは、データの複雑な非線形パターンをキャプチャする能力を持ち、トラフィック予測の強力なツールとして登場した。
グラフニューラルネットワーク(GCN)とトランスフォーマーベースのモデルは、将来性を示しているが、その計算要求はしばしば、現実のネットワークへの応用を妨げる。
本稿では,管理可能な計算フットプリントを維持しつつ,グローバルおよびローカルの両方のトラフィックパターンの効率的なモデリングを可能にする新しいテンポラルグラフトランスフォーマー(STG)アーキテクチャを提案する。
論文 参考訳(メタデータ) (2024-10-01T04:15:48Z) - Unifying Dimensions: A Linear Adaptive Approach to Lightweight Image Super-Resolution [6.857919231112562]
ウィンドウベーストランスは超高解像度タスクにおいて優れた性能を示した。
畳み込みニューラルネットワークよりも計算複雑性と推論レイテンシが高い。
線形適応ミキサーネットワーク(LAMNet)という,畳み込みに基づくトランスフォーマーフレームワークを構築する。
論文 参考訳(メタデータ) (2024-09-26T07:24:09Z) - PDSketch: Integrated Planning Domain Programming and Learning [86.07442931141637]
我々は PDSketch という新しいドメイン定義言語を提案する。
これにより、ユーザーはトランジションモデルで柔軟にハイレベルな構造を定義できる。
移行モデルの詳細は、トレーニング可能なニューラルネットワークによって満たされる。
論文 参考訳(メタデータ) (2023-03-09T18:54:12Z) - Architecture Aware Latency Constrained Sparse Neural Networks [35.50683537052815]
本稿では,CNNモデルの作成と高速化を目的として,遅延制約付きスパースフレームワークを設計する。
また,効率的な計算のための新しいスパース畳み込みアルゴリズムを提案する。
我々のシステム・アルゴリズムの共同設計フレームワークは、リソース制約のあるモバイルデバイス上でのネットワークの精度とレイテンシのフロンティアをはるかに向上させることができる。
論文 参考訳(メタデータ) (2021-09-01T03:41:31Z) - Spatio-temporal Modeling for Large-scale Vehicular Networks Using Graph
Convolutional Networks [110.80088437391379]
SMARTと呼ばれるグラフベースのフレームワークが提案され、大規模な地理的領域にわたるV2I通信遅延の統計をモデル化し、追跡する。
深層Q-networksアルゴリズムと統合したグラフ畳み込みネットワークを用いたグラフ再構築型手法を開発する。
その結果,提案手法は,モデル化の精度と効率と,大規模車両ネットワークにおける遅延性能を有意に向上させることが示された。
論文 参考訳(メタデータ) (2021-03-13T06:56:29Z) - Dataflow Aware Mapping of Convolutional Neural Networks Onto Many-Core
Platforms With Network-on-Chip Interconnect [0.0764671395172401]
マシンインテリジェンス、特に畳み込みニューラルネットワーク(CNN)は、ここ数年で大きな研究領域となっている。
複数の同質なコアで構成される多コアプラットフォームは、データフローマッピングの労力の増大を犠牲にして、物理実装に関する制限を緩和することができる。
この作業は、最小限のランタイムと最小限のオフチップメモリアクセスに対して、最適化目標の異なるシングルコアレベルから始まる自動マッピング戦略を示す。
この戦略は、適切なマルチコアマッピング方式に拡張され、ネットワークオンチップ相互接続によるスケーラブルなシステムレベルシミュレーションを用いて評価される。
論文 参考訳(メタデータ) (2020-06-18T17:13:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。