論文の概要: On the performance of multi-fidelity and reduced-dimensional neural emulators for inference of physiologic boundary conditions
- arxiv url: http://arxiv.org/abs/2506.11683v1
- Date: Fri, 13 Jun 2025 11:20:49 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-16 17:50:49.76875
- Title: On the performance of multi-fidelity and reduced-dimensional neural emulators for inference of physiologic boundary conditions
- Title(参考訳): 生理的境界条件推定のための多次元・低次元神経エミュレータの性能について
- Authors: Chloe H. Choi, Andrea Zanoni, Daniele E. Schiavazzi, Alison L. Marsden,
- Abstract要約: ベイジアンパラメータ推定に焦点をあて, 後方分布からのサンプリングの計算コストを削減するために, 異なる手法を探索する。
一般的なアプローチは、高忠実度シミュレーション自体のための代理モデルを構築することである。
第3のアプローチは、高忠実度モデルと代理モデルの相違をランダムノイズとして扱い、正規化フローを用いて分布を推定することである。
- 参考スコア(独自算出の注目度): 0.7499722271664147
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Solving inverse problems in cardiovascular modeling is particularly challenging due to the high computational cost of running high-fidelity simulations. In this work, we focus on Bayesian parameter estimation and explore different methods to reduce the computational cost of sampling from the posterior distribution by leveraging low-fidelity approximations. A common approach is to construct a surrogate model for the high-fidelity simulation itself. Another is to build a surrogate for the discrepancy between high- and low-fidelity models. This discrepancy, which is often easier to approximate, is modeled with either a fully connected neural network or a nonlinear dimensionality reduction technique that enables surrogate construction in a lower-dimensional space. A third possible approach is to treat the discrepancy between the high-fidelity and surrogate models as random noise and estimate its distribution using normalizing flows. This allows us to incorporate the approximation error into the Bayesian inverse problem by modifying the likelihood function. We validate five different methods which are variations of the above on analytical test cases by comparing them to posterior distributions derived solely from high-fidelity models, assessing both accuracy and computational cost. Finally, we demonstrate our approaches on two cardiovascular examples of increasing complexity: a lumped-parameter Windkessel model and a patient-specific three-dimensional anatomy.
- Abstract(参考訳): 心血管モデリングにおける逆問題の解法は,高忠実度シミュレーションの計算コストが高いため,特に困難である。
本研究はベイズパラメータ推定に焦点をあて、低忠実度近似を利用して後方分布からのサンプリングの計算コストを削減するための異なる手法を探索する。
一般的なアプローチは、高忠実度シミュレーション自体のための代理モデルを構築することである。
もうひとつは、高忠実度モデルと低忠実度モデルとの相違のためのサロゲートを構築することです。
この差は、しばしば近似しやすく、完全に連結されたニューラルネットワークか、低次元空間での代理構築を可能にする非線形次元減少技術のいずれかでモデル化される。
第3のアプローチは、高忠実度モデルと代理モデルの相違をランダムノイズとして扱い、正規化フローを用いて分布を推定することである。
これにより、近似誤差をベイズ逆問題に組み込むことができる。
本研究では,高忠実度モデルのみから得られた後続分布と比較し,精度と計算コストの両面で評価することにより,上記の手法のバリエーションである5つの異なる手法を検証した。
最後に, 複雑化の2つの心臓血管例について, 腹腔内ウィンドケッセルモデルと患者特異的な3次元解剖学的検討を行った。
関連論文リスト
- Solving Inverse Problems with Model Mismatch using Untrained Neural Networks within Model-based Architectures [14.551812310439004]
モデルベースアーキテクチャでは,各インスタンスの計測領域におけるデータの一貫性を一致させるために,トレーニングされていないフォワードモデル残差ブロックを導入する。
提案手法は,パラメータ感受性が低く,追加データを必要としない統一解を提供し,前方モデルの同時適用と1パスの再構成を可能にする。
論文 参考訳(メタデータ) (2024-03-07T19:02:13Z) - Analyzing Neural Network-Based Generative Diffusion Models through Convex Optimization [45.72323731094864]
本稿では,2層ニューラルネットワークを用いた拡散モデル解析のための理論的枠組みを提案する。
我々は,1つの凸プログラムを解くことで,スコア予測のための浅層ニューラルネットワークのトレーニングが可能であることを証明した。
本結果は, ニューラルネットワークに基づく拡散モデルが漸近的でない環境で何を学習するかを, 正確に評価するものである。
論文 参考訳(メタデータ) (2024-02-03T00:20:25Z) - A Deep Unrolling Model with Hybrid Optimization Structure for Hyperspectral Image Deconvolution [50.13564338607482]
本稿では,DeepMixと呼ばれるハイパースペクトルデコンボリューション問題に対する新しい最適化フレームワークを提案する。
これは3つの異なるモジュール、すなわちデータ一貫性モジュール、手作りの正規化器の効果を強制するモジュール、および装飾モジュールで構成されている。
本研究は,他のモジュールの協調作業によって達成される進歩を維持するために設計された,文脈を考慮した認知型モジュールを提案する。
論文 参考訳(メタデータ) (2023-06-10T08:25:16Z) - Multi-fidelity Hierarchical Neural Processes [79.0284780825048]
多要素代理モデリングは、異なるシミュレーション出力を融合させることで計算コストを削減する。
本稿では,多階層型階層型ニューラルネットワーク(MF-HNP)を提案する。
疫学および気候モデリングタスクにおけるMF-HNPの評価を行い、精度と不確実性評価の観点から競合性能を達成した。
論文 参考訳(メタデータ) (2022-06-10T04:54:13Z) - Sparse Bayesian Learning for Complex-Valued Rational Approximations [0.03392423750246091]
サロゲートモデルは、エンジニアリングタスクの計算負担を軽減するために使用される。
これらのモデルは入力パラメータに強い非線形依存を示す。
合理的近似にスパース学習アプローチを適用する。
論文 参考訳(メタデータ) (2022-06-06T12:06:13Z) - RMFGP: Rotated Multi-fidelity Gaussian process with Dimension Reduction
for High-dimensional Uncertainty Quantification [12.826754199680474]
マルチフィデリティモデリングは、少量の正確なデータしか入手できない場合でも、正確な推測を可能にする。
高忠実度モデルと1つ以上の低忠実度モデルを組み合わせることで、多忠実度法は興味のある量の正確な予測を行うことができる。
本稿では,回転多要素ガウス過程の回帰に基づく新しい次元削減フレームワークとベイズ能動学習手法を提案する。
論文 参考訳(メタデータ) (2022-04-11T01:20:35Z) - Inverting brain grey matter models with likelihood-free inference: a
tool for trustable cytoarchitecture measurements [62.997667081978825]
脳の灰白質細胞構造の特徴は、体密度と体積に定量的に敏感であり、dMRIでは未解決の課題である。
我々は新しいフォワードモデル、特に新しい方程式系を提案し、比較的スパースなb殻を必要とする。
次に,提案手法を逆転させるため,確率自由推論 (LFI) として知られるベイズ解析から最新のツールを適用した。
論文 参考訳(メタデータ) (2021-11-15T09:08:27Z) - Estimation of Bivariate Structural Causal Models by Variational Gaussian
Process Regression Under Likelihoods Parametrised by Normalising Flows [74.85071867225533]
因果機構は構造因果モデルによって記述できる。
最先端の人工知能の大きな欠点の1つは、説明責任の欠如である。
論文 参考訳(メタデータ) (2021-09-06T14:52:58Z) - A Twin Neural Model for Uplift [59.38563723706796]
Upliftは条件付き治療効果モデリングの特定のケースです。
相対リスクのベイズ解釈との関連性を利用して定義した新たな損失関数を提案する。
本提案手法は,シミュレーション設定の最先端と大規模ランダム化実験による実データとの競合性を示す。
論文 参考訳(メタデータ) (2021-05-11T16:02:39Z) - Jointly Modeling and Clustering Tensors in High Dimensions [6.072664839782975]
テンソルの合同ベンチマークとクラスタリングの問題を考察する。
本稿では,統計的精度の高い近傍に幾何的に収束する効率的な高速最適化アルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-04-15T21:06:16Z) - Using Bayesian deep learning approaches for uncertainty-aware building
energy surrogate models [0.0]
機械学習シュロゲートモデルは、遅くて高忠実なエンジニアリングシミュレーションモデルをエミュレートするために訓練される。
ベイズパラダイムに従う深層学習モデルが存在する。
その結果, 高い不確実性を有する試料の10%を高忠実度モデルに転送した場合, 誤差を最大30%低減できることがわかった。
論文 参考訳(メタデータ) (2020-10-05T15:04:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。