Smart Buildings Energy Consumption Forecasting using Adaptive Evolutionary Ensemble Learning Models
- URL: http://arxiv.org/abs/2506.11864v1
- Date: Fri, 13 Jun 2025 15:13:15 GMT
- Title: Smart Buildings Energy Consumption Forecasting using Adaptive Evolutionary Ensemble Learning Models
- Authors: Mehdi Neshat, Menasha Thilakaratne, Mohammed El-Abd, Seyedali Mirjalili, Amir H. Gandomi, John Boland,
- Abstract summary: This paper proposes three hybrid ensemble predictive models, incorporating Bagging, Stacking, and Voting mechanisms combined with a fast and effective evolutionary hyper- parameters tuner.<n>The performance of the proposed energy forecasting model was evaluated using a hybrid dataset comprising meteorological parameters, appliance energy use, temperature, humidity, and lighting energy consumption from various sections of a building, collected by 18 sensors located in Stambroek, Mons, Belgium.<n>The prediction results indicate that the adaptive evolutionary bagging model surpassed other predictive models in both accuracy and learning error.
- Score: 23.650796013805937
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Smart buildings are gaining popularity because they can enhance energy efficiency, lower costs, improve security, and provide a more comfortable and convenient environment for building occupants. A considerable portion of the global energy supply is consumed in the building sector and plays a pivotal role in future decarbonization pathways. To manage energy consumption and improve energy efficiency in smart buildings, developing reliable and accurate energy demand forecasting is crucial and meaningful. However, extending an effective predictive model for the total energy use of appliances at the building level is challenging because of temporal oscillations and complex linear and non-linear patterns. This paper proposes three hybrid ensemble predictive models, incorporating Bagging, Stacking, and Voting mechanisms combined with a fast and effective evolutionary hyper-parameters tuner. The performance of the proposed energy forecasting model was evaluated using a hybrid dataset comprising meteorological parameters, appliance energy use, temperature, humidity, and lighting energy consumption from various sections of a building, collected by 18 sensors located in Stambroek, Mons, Belgium. To provide a comparative framework and investigate the efficiency of the proposed predictive model, 15 popular machine learning (ML) models, including two classic ML models, three NNs, a Decision Tree (DT), a Random Forest (RF), two Deep Learning (DL) and six Ensemble models, were compared. The prediction results indicate that the adaptive evolutionary bagging model surpassed other predictive models in both accuracy and learning error. Notably, it achieved accuracy gains of 12.6%, 13.7%, 12.9%, 27.04%, and 17.4% compared to Extreme Gradient Boosting (XGB), Categorical Boosting (CatBoost), GBM, LGBM, and Random Forest (RF).
Related papers
- Feature Engineering Approach to Building Load Prediction: A Case Study for Commercial Building Chiller Plant Optimization in Tropical Weather [1.9182246029051933]
This study presents a cooling load prediction model that combines a neural network with Kalman filtering and K-means clustering.<n> Applied to real world data from a commercial skyscraper in Singapore's central business district, the model achieved a 46.5% improvement in prediction accuracy.
arXiv Detail & Related papers (2025-02-17T10:22:43Z) - Integrating Physics and Data-Driven Approaches: An Explainable and Uncertainty-Aware Hybrid Model for Wind Turbine Power Prediction [1.1270209626877075]
The rapid growth of the wind energy sector underscores the urgent need to optimize turbine operations.<n>Traditional empirical and physics-based models offer approximate predictions of power generation based on wind speed.<n>Data-driven machine learning methods present a promising avenue for improving wind turbine modeling.
arXiv Detail & Related papers (2025-02-11T08:16:48Z) - TRIZ Method for Urban Building Energy Optimization: GWO-SARIMA-LSTM Forecasting model [0.34028430825850625]
This study proposes a hybrid deep learning model that combines TRIZ innovation theory with GWO, SARIMA and LSTM to improve the accuracy of building energy consumption prediction.
Our experiments demonstrate a significant 15% reduction in prediction error compared to existing models.
arXiv Detail & Related papers (2024-10-20T04:46:42Z) - Global Transformer Architecture for Indoor Room Temperature Forecasting [49.32130498861987]
This work presents a global Transformer architecture for indoor temperature forecasting in multi-room buildings.
It aims at optimizing energy consumption and reducing greenhouse gas emissions associated with HVAC systems.
Notably, this study is the first to apply a Transformer architecture for indoor temperature forecasting in multi-room buildings.
arXiv Detail & Related papers (2023-10-31T14:09:32Z) - DECODE: Data-driven Energy Consumption Prediction leveraging Historical
Data and Environmental Factors in Buildings [1.2891210250935148]
This paper introduces a Long Short-Term Memory (LSTM) model designed to forecast building energy consumption.
The LSTM model provides accurate short, medium, and long-term energy predictions for residential and commercial buildings.
It demonstrates exceptional prediction accuracy, boasting the highest R2 score of 0.97 and the most favorable mean absolute error (MAE) of 0.007.
arXiv Detail & Related papers (2023-09-06T11:02:53Z) - A Comparative Study of Machine Learning Algorithms for Anomaly Detection
in Industrial Environments: Performance and Environmental Impact [62.997667081978825]
This study seeks to address the demands of high-performance machine learning models with environmental sustainability.
Traditional machine learning algorithms, such as Decision Trees and Random Forests, demonstrate robust efficiency and performance.
However, superior outcomes were obtained with optimised configurations, albeit with a commensurate increase in resource consumption.
arXiv Detail & Related papers (2023-07-01T15:18:00Z) - Cascaded Deep Hybrid Models for Multistep Household Energy Consumption
Forecasting [5.478764356647437]
This study introduces two hybrid cascaded models for forecasting multistep household power consumption in different resolutions.
The proposed hybrid models achieve superior prediction performance compared to the existing multistep power consumption prediction methods.
arXiv Detail & Related papers (2022-07-06T11:02:23Z) - Your Autoregressive Generative Model Can be Better If You Treat It as an
Energy-Based One [83.5162421521224]
We propose a unique method termed E-ARM for training autoregressive generative models.
E-ARM takes advantage of a well-designed energy-based learning objective.
We show that E-ARM can be trained efficiently and is capable of alleviating the exposure bias problem.
arXiv Detail & Related papers (2022-06-26T10:58:41Z) - Sparse MoEs meet Efficient Ensembles [49.313497379189315]
We study the interplay of two popular classes of such models: ensembles of neural networks and sparse mixture of experts (sparse MoEs)
We present Efficient Ensemble of Experts (E$3$), a scalable and simple ensemble of sparse MoEs that takes the best of both classes of models, while using up to 45% fewer FLOPs than a deep ensemble.
arXiv Detail & Related papers (2021-10-07T11:58:35Z) - Efficient pre-training objectives for Transformers [84.64393460397471]
We study several efficient pre-training objectives for Transformers-based models.
We prove that eliminating the MASK token and considering the whole output during the loss are essential choices to improve performance.
arXiv Detail & Related papers (2021-04-20T00:09:37Z) - NeurOpt: Neural network based optimization for building energy
management and climate control [58.06411999767069]
We propose a data-driven control algorithm based on neural networks to reduce this cost of model identification.
We validate our learning and control algorithms on a two-story building with ten independently controlled zones, located in Italy.
arXiv Detail & Related papers (2020-01-22T00:51:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.