Device-Cloud Collaborative Correction for On-Device Recommendation
- URL: http://arxiv.org/abs/2506.12687v1
- Date: Sun, 15 Jun 2025 02:20:18 GMT
- Title: Device-Cloud Collaborative Correction for On-Device Recommendation
- Authors: Tianyu Zhan, Shengyu Zhang, Zheqi Lv, Jieming Zhu, Jiwei Li, Fan Wu, Fei Wu,
- Abstract summary: We propose CoCorrRec to balance real-time performance and high performance on devices.<n>CoCorrRec uses a self-correction network (SCN) to correct parameters with extremely low time cost.<n>We show CoCorrRec outperforms Transformer-based and RNN-based device recommendation models in terms of performance.
- Score: 30.559850728892943
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the rapid development of recommendation models and device computing power, device-based recommendation has become an important research area due to its better real-time performance and privacy protection. Previously, Transformer-based sequential recommendation models have been widely applied in this field because they outperform Recurrent Neural Network (RNN)-based recommendation models in terms of performance. However, as the length of interaction sequences increases, Transformer-based models introduce significantly more space and computational overhead compared to RNN-based models, posing challenges for device-based recommendation. To balance real-time performance and high performance on devices, we propose Device-Cloud \underline{Co}llaborative \underline{Corr}ection Framework for On-Device \underline{Rec}ommendation (CoCorrRec). CoCorrRec uses a self-correction network (SCN) to correct parameters with extremely low time cost. By updating model parameters during testing based on the input token, it achieves performance comparable to current optimal but more complex Transformer-based models. Furthermore, to prevent SCN from overfitting, we design a global correction network (GCN) that processes hidden states uploaded from devices and provides a global correction solution. Extensive experiments on multiple datasets show that CoCorrRec outperforms existing Transformer-based and RNN-based device recommendation models in terms of performance, with fewer parameters and lower FLOPs, thereby achieving a balance between real-time performance and high efficiency.
Related papers
- The Larger the Merrier? Efficient Large AI Model Inference in Wireless Edge Networks [56.37880529653111]
The demand for large computation model (LAIM) services is driving a paradigm shift from traditional cloud-based inference to edge-based inference for low-latency, privacy-preserving applications.<n>In this paper, we investigate the LAIM-inference scheme, where a pre-trained LAIM is pruned and partitioned into on-device and on-server sub-models for deployment.
arXiv Detail & Related papers (2025-05-14T08:18:55Z) - PIAD-SRNN: Physics-Informed Adaptive Decomposition in State-Space RNN [1.3654846342364306]
Time series forecasting often demands a trade-off between accuracy and efficiency.<n>We propose PIAD-SRNN, a physics-informed adaptive decomposition state-space RNN.<n>We evaluate PIAD-SRNN's performance on indoor air quality datasets.
arXiv Detail & Related papers (2024-12-01T22:55:58Z) - Less is KEN: a Universal and Simple Non-Parametric Pruning Algorithm for Large Language Models [1.5807079236265718]
KEN is a straightforward, universal and unstructured pruning algorithm based on Kernel Density Estimation (KDE)
Ken aims to construct optimized transformers by selectively preserving the most significant parameters while restoring others to their pre-training state.
Ken achieves equal or better performance than their original unpruned versions, with a minimum parameter reduction of 25%.
arXiv Detail & Related papers (2024-02-05T16:11:43Z) - Linear Combination of Exponential Moving Averages for Wireless Channel
Prediction [2.34863357088666]
In this work, prediction models based on the exponential moving average (EMA) are investigated in depth.
A new model that we called EMA linear combination (ELC) is introduced, explained, and evaluated experimentally.
arXiv Detail & Related papers (2023-12-13T07:44:05Z) - DUET: A Tuning-Free Device-Cloud Collaborative Parameters Generation Framework for Efficient Device Model Generalization [66.27399823422665]
Device Model Generalization (DMG) is a practical yet under-investigated research topic for on-device machine learning applications.<n>We propose an efficient Device-cloUd collaborative parametErs generaTion framework DUET.
arXiv Detail & Related papers (2022-09-12T13:26:26Z) - Persistence Initialization: A novel adaptation of the Transformer
architecture for Time Series Forecasting [0.7734726150561088]
Time series forecasting is an important problem, with many real world applications.
We propose a novel adaptation of the original Transformer architecture focusing on the task of time series forecasting.
We use a decoder Transformer with ReZero normalization and Rotary positional encodings, but the adaptation is applicable to any auto-regressive neural network model.
arXiv Detail & Related papers (2022-08-30T13:04:48Z) - Benchmarking Test-Time Unsupervised Deep Neural Network Adaptation on
Edge Devices [19.335535517714703]
The prediction accuracy of the deep neural networks (DNNs) after deployment at the edge can suffer with time due to shifts in the distribution of the new data.
Recent prediction-time unsupervised DNN adaptation techniques have been introduced that improve prediction accuracy of the models for noisy data by re-tuning the batch normalization parameters.
This paper, for the first time, performs a comprehensive measurement study of such techniques to quantify their performance and energy on various edge devices.
arXiv Detail & Related papers (2022-03-21T19:10:40Z) - An Adaptive Device-Edge Co-Inference Framework Based on Soft
Actor-Critic [72.35307086274912]
High-dimension parameter model and large-scale mathematical calculation restrict execution efficiency, especially for Internet of Things (IoT) devices.
We propose a new Deep Reinforcement Learning (DRL)-Soft Actor Critic for discrete (SAC-d), which generates the emphexit point, emphexit point, and emphcompressing bits by soft policy iterations.
Based on the latency and accuracy aware reward design, such an computation can well adapt to the complex environment like dynamic wireless channel and arbitrary processing, and is capable of supporting the 5G URL
arXiv Detail & Related papers (2022-01-09T09:31:50Z) - GRIM: A General, Real-Time Deep Learning Inference Framework for Mobile
Devices based on Fine-Grained Structured Weight Sparsity [46.75304109970339]
This paper designs a novel mobile inference acceleration framework GRIM that is General to both convolutional neural networks (CNNs) and recurrent neural networks (RNNs)
We propose a new fine-grained structured sparsity scheme through the Block-based Column-Row (BCR) pruning.
Based on this new fine-grained structured sparsity, our GRIM framework consists of two parts: (a) the compiler optimization and code generation for real-time mobile inference.
arXiv Detail & Related papers (2021-08-25T03:50:46Z) - Learning to Solve the AC-OPF using Sensitivity-Informed Deep Neural
Networks [52.32646357164739]
We propose a deep neural network (DNN) to solve the solutions of the optimal power flow (ACOPF)
The proposed SIDNN is compatible with a broad range of OPF schemes.
It can be seamlessly integrated in other learning-to-OPF schemes.
arXiv Detail & Related papers (2021-03-27T00:45:23Z) - A Privacy-Preserving-Oriented DNN Pruning and Mobile Acceleration
Framework [56.57225686288006]
Weight pruning of deep neural networks (DNNs) has been proposed to satisfy the limited storage and computing capability of mobile edge devices.
Previous pruning methods mainly focus on reducing the model size and/or improving performance without considering the privacy of user data.
We propose a privacy-preserving-oriented pruning and mobile acceleration framework that does not require the private training dataset.
arXiv Detail & Related papers (2020-03-13T23:52:03Z) - PatDNN: Achieving Real-Time DNN Execution on Mobile Devices with
Pattern-based Weight Pruning [57.20262984116752]
We introduce a new dimension, fine-grained pruning patterns inside the coarse-grained structures, revealing a previously unknown point in design space.
With the higher accuracy enabled by fine-grained pruning patterns, the unique insight is to use the compiler to re-gain and guarantee high hardware efficiency.
arXiv Detail & Related papers (2020-01-01T04:52:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.