Rethinking DPO: The Role of Rejected Responses in Preference Misalignment
- URL: http://arxiv.org/abs/2506.12725v1
- Date: Sun, 15 Jun 2025 05:32:07 GMT
- Title: Rethinking DPO: The Role of Rejected Responses in Preference Misalignment
- Authors: Jay Hyeon Cho, JunHyeok Oh, Myunsoo Kim, Byung-Jun Lee,
- Abstract summary: We propose Bounded-DPO (BDPO), a novel method that bounds the influence of rejected responses while maintaining the original optimization structure of DPO.<n>We demonstrate that BDPO achieves a balanced optimization of the chosen and rejected responses, outperforming existing algorithms.
- Score: 4.760537994346813
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Direct Preference Optimization (DPO) is a simple and efficient framework that has attracted substantial attention. However, it often struggles to meet its primary objectives -- increasing the generation probability of chosen responses while reducing that of rejected responses -- due to the dominant influence of rejected responses on the loss function. This imbalance leads to suboptimal performance in promoting preferred responses. In this work, we systematically analyze the limitations of DPO and existing algorithms designed to achieve the objectives stated above. To address these limitations, we propose Bounded-DPO (BDPO), a novel method that bounds the influence of rejected responses while maintaining the original optimization structure of DPO. Through theoretical analysis and empirical evaluations, we demonstrate that BDPO achieves a balanced optimization of the chosen and rejected responses, outperforming existing algorithms.
Related papers
- Explicit Preference Optimization: No Need for an Implicit Reward Model [18.225409932618657]
Direct preference optimization (DPO) and its offshoots circumvent the need for a separate reward training step.<n>We show that DPO-based objectives are nonetheless subject to sub-optimal regularization and counter-intuitive artifacts.
arXiv Detail & Related papers (2025-06-09T07:11:01Z) - On the Effect of Negative Gradient in Group Relative Deep Reinforcement Optimization [52.76330545825083]
Reinforcement learning (RL) has become popular in enhancing the reasoning capabilities of large language models (LLMs)<n>We identify a previously unrecognized phenomenon we term Lazy Likelihood Displacement (LLD), wherein the likelihood of correct responses marginally increases or even decreases during training.<n>We develop a method called NTHR, which downweights penalties on tokens contributing to the LLD. Unlike prior DPO-based approaches, NTHR takes advantage of GRPO's group-based structure, using correct responses as anchors to identify influential tokens.
arXiv Detail & Related papers (2025-05-24T18:58:51Z) - DisCO: Reinforcing Large Reasoning Models with Discriminative Constrained Optimization [55.06360285372418]
Group Relative Policy Optimization is a reinforcement learning method for large reasoning models (LRMs)<n>In this work, we analyze the GRPO objective under a binary reward setting and reveal an inherent limitation of question-level difficulty bias.<n>We introduce a new Discriminative Constrained Optimization framework for reinforcing LRMs, grounded in the principle of discriminative learning.
arXiv Detail & Related papers (2025-05-18T11:08:32Z) - A Simple and Effective Reinforcement Learning Method for Text-to-Image Diffusion Fine-tuning [61.403275660120606]
Reinforcement learning (RL)-based fine-tuning has emerged as a powerful approach for aligning diffusion models with black-box objectives.<n>We propose leave-one-out PPO (LOOP), a novel RL for diffusion fine-tuning method.<n>Our results demonstrate that LOOP effectively improves diffusion models on various black-box objectives, and achieves a better balance between computational efficiency and performance.
arXiv Detail & Related papers (2025-03-02T13:43:53Z) - Gradient Imbalance in Direct Preference Optimization [26.964127989679596]
We propose Balanced-DPO, a simple yet effective modification to the DPO objective that introduces a computationally efficient gradient reweighting mechanism.<n>Our experiments demonstrate the effectiveness of Balanced-DPO, validating the theoretical findings and confirming that addressing gradient imbalance is key to improving DPO's performance.
arXiv Detail & Related papers (2025-02-28T08:47:03Z) - Uncertainty-Penalized Direct Preference Optimization [52.387088396044206]
We develop a pessimistic framework for DPO by introducing preference uncertainty penalization schemes.
The penalization serves as a correction to the loss which attenuates the loss gradient for uncertain samples.
We show improved overall performance compared to vanilla DPO, as well as better completions on prompts from high-uncertainty chosen/rejected responses.
arXiv Detail & Related papers (2024-10-26T14:24:37Z) - 3D-Properties: Identifying Challenges in DPO and Charting a Path Forward [17.27880657597116]
We revisit DPO, analyzing its theoretical foundations and empirical performance.<n>We identify three key properties, termed 3D properties, that emerge from DPO's learning process.<n>We propose simple regularization techniques that improve training stability and performance.
arXiv Detail & Related papers (2024-06-11T14:59:24Z) - Provably Mitigating Overoptimization in RLHF: Your SFT Loss is Implicitly an Adversarial Regularizer [52.09480867526656]
We identify the source of misalignment as a form of distributional shift and uncertainty in learning human preferences.<n>To mitigate overoptimization, we first propose a theoretical algorithm that chooses the best policy for an adversarially chosen reward model.<n>Using the equivalence between reward models and the corresponding optimal policy, the algorithm features a simple objective that combines a preference optimization loss and a supervised learning loss.
arXiv Detail & Related papers (2024-05-26T05:38:50Z) - Overcoming Reward Overoptimization via Adversarial Policy Optimization with Lightweight Uncertainty Estimation [46.61909578101735]
Adversarial Policy Optimization (AdvPO) is a novel solution to the pervasive issue of reward over-optimization in Reinforcement Learning from Human Feedback.
In this paper, we introduce a lightweight way to quantify uncertainties in rewards, relying solely on the last layer embeddings of the reward model.
arXiv Detail & Related papers (2024-03-08T09:20:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.