Scene-aware SAR ship detection guided by unsupervised sea-land segmentation
- URL: http://arxiv.org/abs/2506.12775v1
- Date: Sun, 15 Jun 2025 08:57:20 GMT
- Title: Scene-aware SAR ship detection guided by unsupervised sea-land segmentation
- Authors: Han Ke, Xiao Ke, Ye Yan, Rui Liu, Jinpeng Yang, Tianwen Zhang, Xu Zhan, Xiaowo Xu,
- Abstract summary: We propose a scene-aware SAR ship detection method based on unsupervised sea-land segmentation.<n>We use two models: the unsupervised land and sea segmentation module (ULSM) and the land attention suppression module (LASM)<n>ULSM and LASM can adaptively guide the network to reduce attention on land according to the type of scenes.<n>LASM uses the sea-land segmentation information as prior knowledge to reduce the network's attention to land.
- Score: 9.17080068409937
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: DL based Synthetic Aperture Radar (SAR) ship detection has tremendous advantages in numerous areas. However, it still faces some problems, such as the lack of prior knowledge, which seriously affects detection accuracy. In order to solve this problem, we propose a scene-aware SAR ship detection method based on unsupervised sea-land segmentation. This method follows a classical two-stage framework and is enhanced by two models: the unsupervised land and sea segmentation module (ULSM) and the land attention suppression module (LASM). ULSM and LASM can adaptively guide the network to reduce attention on land according to the type of scenes (inshore scene and offshore scene) and add prior knowledge (sea land segmentation information) to the network, thereby reducing the network's attention to land directly and enhancing offshore detection performance relatively. This increases the accuracy of ship detection and enhances the interpretability of the model. Specifically, in consideration of the lack of land sea segmentation labels in existing deep learning-based SAR ship detection datasets, ULSM uses an unsupervised approach to classify the input data scene into inshore and offshore types and performs sea-land segmentation for inshore scenes. LASM uses the sea-land segmentation information as prior knowledge to reduce the network's attention to land. We conducted our experiments using the publicly available SSDD dataset, which demonstrated the effectiveness of our network.
Related papers
- A Computer Vision Approach to Estimate the Localized Sea State [45.498315114762484]
This research focuses on utilizing sea images in operational envelopes captured by a single stationary camera mounted on the ship bridge.
The collected images are used to train a deep learning model to automatically recognize the state of the sea based on the Beaufort scale.
arXiv Detail & Related papers (2024-07-04T09:07:25Z) - Learning of Sea Surface Height Interpolation from Multi-variate Simulated Satellite Observations [0.0]
We train an Attention-Based-Decoder deep learning network (textscabed) on this data.
We evaluate ABED reconstructions when trained using either supervised or unsupervised loss functions, with or without SST information.
Based on real SSH observations from the Ocean Data Challenge 2021, we find that this learning strategy, combined with the use of SST, decreases the root mean squared error by 24% compared to OI.
arXiv Detail & Related papers (2023-10-11T16:09:09Z) - Learning Heavily-Degraded Prior for Underwater Object Detection [59.5084433933765]
This paper seeks transferable prior knowledge from detector-friendly images.
It is based on statistical observations that, the heavily degraded regions of detector-friendly (DFUI) and underwater images have evident feature distribution gaps.
Our method with higher speeds and less parameters still performs better than transformer-based detectors.
arXiv Detail & Related papers (2023-08-24T12:32:46Z) - DeepAqua: Self-Supervised Semantic Segmentation of Wetland Surface Water
Extent with SAR Images using Knowledge Distillation [44.99833362998488]
We present DeepAqua, a self-supervised deep learning model that eliminates the need for manual annotations during the training phase.
We exploit cases where optical- and radar-based water masks coincide, enabling the detection of both open and vegetated water surfaces.
Experimental results show that DeepAqua outperforms other unsupervised methods by improving accuracy by 7%, Intersection Over Union by 27%, and F1 score by 14%.
arXiv Detail & Related papers (2023-05-02T18:06:21Z) - Automatized marine vessel monitoring from sentinel-1 data using
convolution neural network [0.0]
We introduce wavelet transformation-based Convolution Neural Network approach to recognize objects from SAR images during the heavy naval traffic.
The information comprises Sentinel-1 SAR-C dual-polarization data acquisitions over the western coastal zones of India.
arXiv Detail & Related papers (2023-04-23T18:09:44Z) - Cross-Geography Generalization of Machine Learning Methods for
Classification of Flooded Regions in Aerial Images [3.9921541182631253]
This work proposes two approaches for identifying flooded regions in UAV aerial images.
The first approach utilizes texture-based unsupervised segmentation to detect flooded areas.
The second uses an artificial neural network on the texture features to classify images as flooded and non-flooded.
arXiv Detail & Related papers (2022-10-04T13:11:44Z) - Attentive Dual Stream Siamese U-net for Flood Detection on
Multi-temporal Sentinel-1 Data [0.0]
We propose a flood detection network using bi-temporal SAR acquisitions.
The proposed segmentation network has an encoder-decoder architecture with two Siamese encoders for pre and post-flood images.
The network outperformed the existing state-of-the-art (uni-temporal) flood detection method by 6% IOU.
arXiv Detail & Related papers (2022-04-20T10:56:39Z) - Embedding Earth: Self-supervised contrastive pre-training for dense land
cover classification [61.44538721707377]
We present Embedding Earth a self-supervised contrastive pre-training method for leveraging the large availability of satellite imagery.
We observe significant improvements up to 25% absolute mIoU when pre-trained with our proposed method.
We find that learnt features can generalize between disparate regions opening up the possibility of using the proposed pre-training scheme.
arXiv Detail & Related papers (2022-03-11T16:14:14Z) - Context-Preserving Instance-Level Augmentation and Deformable
Convolution Networks for SAR Ship Detection [50.53262868498824]
Shape deformation of targets in SAR image due to random orientation and partial information loss is an essential challenge in SAR ship detection.
We propose a data augmentation method to train a deep network that is robust to partial information loss within the targets.
arXiv Detail & Related papers (2022-02-14T07:01:01Z) - LSENet: Location and Seasonality Enhanced Network for Multi-Class Ocean
Front Detection [22.86716538369453]
Ocean fronts can cause the accumulation of nutrients and affect the propagation of underwater sound.
Current ocean front detection methods either have low detection accuracy or most can only detect the occurrence of ocean front by binary classification.
We propose a semantic segmentation network called location and seasonality enhanced network (LSENet) for multi-class ocean fronts detection at pixel level.
arXiv Detail & Related papers (2021-08-05T08:40:42Z) - Triggering Failures: Out-Of-Distribution detection by learning from
local adversarial attacks in Semantic Segmentation [76.2621758731288]
We tackle the detection of out-of-distribution (OOD) objects in semantic segmentation.
Our main contribution is a new OOD detection architecture called ObsNet associated with a dedicated training scheme based on Local Adversarial Attacks (LAA)
We show it obtains top performances both in speed and accuracy when compared to ten recent methods of the literature on three different datasets.
arXiv Detail & Related papers (2021-08-03T17:09:56Z) - Dense Attention Fluid Network for Salient Object Detection in Optical
Remote Sensing Images [193.77450545067967]
We propose an end-to-end Dense Attention Fluid Network (DAFNet) for salient object detection in optical remote sensing images (RSIs)
A Global Context-aware Attention (GCA) module is proposed to adaptively capture long-range semantic context relationships.
We construct a new and challenging optical RSI dataset for SOD that contains 2,000 images with pixel-wise saliency annotations.
arXiv Detail & Related papers (2020-11-26T06:14:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.