PDEfuncta: Spectrally-Aware Neural Representation for PDE Solution Modeling
- URL: http://arxiv.org/abs/2506.12790v1
- Date: Sun, 15 Jun 2025 09:41:25 GMT
- Title: PDEfuncta: Spectrally-Aware Neural Representation for PDE Solution Modeling
- Authors: Minju Jo, Woojin Cho, Uvini Balasuriya Mudiyanselage, Seungjun Lee, Noseong Park, Kookjin Lee,
- Abstract summary: We propose a novel modulation technique that injects high-frequency information at each layer of the implicit neural representation.<n>This enables compact and accurate representation of multiple solution fields using low-dimensional latent vectors.<n>We also introduce PDEfuncta, a meta-learning framework designed to learn multi-modal solution fields and support generalization to new tasks.
- Score: 26.573976229483442
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Scientific machine learning often involves representing complex solution fields that exhibit high-frequency features such as sharp transitions, fine-scale oscillations, and localized structures. While implicit neural representations (INRs) have shown promise for continuous function modeling, capturing such high-frequency behavior remains a challenge-especially when modeling multiple solution fields with a shared network. Prior work addressing spectral bias in INRs has primarily focused on single-instance settings, limiting scalability and generalization. In this work, we propose Global Fourier Modulation (GFM), a novel modulation technique that injects high-frequency information at each layer of the INR through Fourier-based reparameterization. This enables compact and accurate representation of multiple solution fields using low-dimensional latent vectors. Building upon GFM, we introduce PDEfuncta, a meta-learning framework designed to learn multi-modal solution fields and support generalization to new tasks. Through empirical studies on diverse scientific problems, we demonstrate that our method not only improves representational quality but also shows potential for forward and inverse inference tasks without the need for retraining.
Related papers
- AuxDet: Auxiliary Metadata Matters for Omni-Domain Infrared Small Target Detection [58.67129770371016]
We propose a novel IRSTD framework that reimagines the IRSTD paradigm by incorporating textual metadata for scene-aware optimization.<n>AuxDet consistently outperforms state-of-the-art methods, validating the critical role of auxiliary information in improving robustness and accuracy.
arXiv Detail & Related papers (2025-05-21T07:02:05Z) - LOGLO-FNO: Efficient Learning of Local and Global Features in Fourier Neural Operators [20.77877474840923]
High-frequency information is a critical challenge in machine learning.<n>Deep neural nets exhibit the so-called spectral bias toward learning low-frequency components.<n>We propose a novel frequency-sensitive loss term based on radially binned spectral errors.
arXiv Detail & Related papers (2025-04-05T19:35:04Z) - Geometric Neural Process Fields [58.77241763774756]
Geometric Neural Process Fields (G-NPF) is a probabilistic framework for neural radiance fields that explicitly captures uncertainty.<n>Building on these bases, we design a hierarchical latent variable model, allowing G-NPF to integrate structural information across multiple spatial levels.<n> Experiments on novel-view synthesis for 3D scenes, as well as 2D image and 1D signal regression, demonstrate the effectiveness of our method.
arXiv Detail & Related papers (2025-02-04T14:17:18Z) - STAF: Sinusoidal Trainable Activation Functions for Implicit Neural Representation [7.2888019138115245]
Implicit Neural Representations (INRs) have emerged as a powerful framework for modeling continuous signals.<n>The spectral bias of ReLU-based networks is a well-established limitation, restricting their ability to capture fine-grained details in target signals.<n>We introduce Sinusoidal Trainable Functions Activation (STAF)<n>STAF inherently modulates its frequency components, allowing for self-adaptive spectral learning.
arXiv Detail & Related papers (2025-02-02T18:29:33Z) - Learnable Infinite Taylor Gaussian for Dynamic View Rendering [55.382017409903305]
This paper introduces a novel approach based on a learnable Taylor Formula to model the temporal evolution of Gaussians.<n>The proposed method achieves state-of-the-art performance in this domain.
arXiv Detail & Related papers (2024-12-05T16:03:37Z) - DimOL: Dimensional Awareness as A New 'Dimension' in Operator Learning [60.58067866537143]
We introduce DimOL (Dimension-aware Operator Learning), drawing insights from dimensional analysis.<n>To implement DimOL, we propose the ProdLayer, which can be seamlessly integrated into FNO-based and Transformer-based PDE solvers.<n> Empirically, DimOL models achieve up to 48% performance gain within the PDE datasets.
arXiv Detail & Related papers (2024-10-08T10:48:50Z) - Hierarchical Neural Operator Transformer with Learnable Frequency-aware Loss Prior for Arbitrary-scale Super-resolution [13.298472586395276]
We present an arbitrary-scale super-resolution (SR) method to enhance the resolution of scientific data.
We conduct extensive experiments on diverse datasets from different domains.
arXiv Detail & Related papers (2024-05-20T17:39:29Z) - Enhancing Solutions for Complex PDEs: Introducing Complementary Convolution and Equivariant Attention in Fourier Neural Operators [17.91230192726962]
We propose a novel hierarchical Fourier neural operator along with convolution-residual layers and attention mechanisms to solve complex PDEs.
We find that the proposed method achieves superior performance in these PDE benchmarks, especially for equations characterized by rapid coefficient variations.
arXiv Detail & Related papers (2023-11-21T11:04:13Z) - Incremental Spatial and Spectral Learning of Neural Operators for
Solving Large-Scale PDEs [86.35471039808023]
We introduce the Incremental Fourier Neural Operator (iFNO), which progressively increases the number of frequency modes used by the model.
We show that iFNO reduces total training time while maintaining or improving generalization performance across various datasets.
Our method demonstrates a 10% lower testing error, using 20% fewer frequency modes compared to the existing Fourier Neural Operator, while also achieving a 30% faster training.
arXiv Detail & Related papers (2022-11-28T09:57:15Z) - Mitigating spectral bias for the multiscale operator learning [14.404769413313371]
We propose a hierarchical attention neural operator (HANO) inspired by the hierarchical matrix approach.
HANO features a scale-adaptive interaction range and self-attentions over a hierarchy of levels, enabling nested feature computation with controllable linear cost.
Our numerical experiments demonstrate that HANO outperforms state-of-the-art (SOTA) methods for representative multiscale problems.
arXiv Detail & Related papers (2022-10-19T21:09:29Z) - Towards Multi-spatiotemporal-scale Generalized PDE Modeling [4.924631198058705]
We make a comparison between various FNO and U-Net like approaches on fluid mechanics problems in both vorticity-stream and velocity function form.
We show promising results on generalization to different PDE parameters and time-scales with a single surrogate model.
arXiv Detail & Related papers (2022-09-30T17:40:05Z) - Momentum Diminishes the Effect of Spectral Bias in Physics-Informed
Neural Networks [72.09574528342732]
Physics-informed neural network (PINN) algorithms have shown promising results in solving a wide range of problems involving partial differential equations (PDEs)
They often fail to converge to desirable solutions when the target function contains high-frequency features, due to a phenomenon known as spectral bias.
In the present work, we exploit neural tangent kernels (NTKs) to investigate the training dynamics of PINNs evolving under gradient descent with momentum (SGDM)
arXiv Detail & Related papers (2022-06-29T19:03:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.