論文の概要: PuDHammer: Experimental Analysis of Read Disturbance Effects of Processing-using-DRAM in Real DRAM Chips
- arxiv url: http://arxiv.org/abs/2506.12947v1
- Date: Sun, 15 Jun 2025 19:17:50 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-17 17:28:47.122097
- Title: PuDHammer: Experimental Analysis of Read Disturbance Effects of Processing-using-DRAM in Real DRAM Chips
- Title(参考訳): PuDHammer:実DRAMチップにおける処理用DRAMの読み取り外乱効果の実験的検討
- Authors: Ismail Emir Yuksel, Akash Sood, Ataberk Olgun, Oğuzhan Canpolat, Haocong Luo, F. Nisa Bostancı, Mohammad Sadrosadati, A. Giray Yağlıkçı, Onur Mutlu,
- Abstract要約: 本稿では,316個の実DDR4 DRAMチップを用いたPuD(PuDHammerと呼ぶ)の読み出し障害効果について述べる。
PuDHammerは読み出し障害の脆弱性を大幅に悪化させ、最初のビットフリップを誘導するために必要な最小ハンマー数を158.58倍に削減した。
- 参考スコア(独自算出の注目度): 6.537810647501026
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Processing-using-DRAM (PuD) is a promising paradigm for alleviating the data movement bottleneck using DRAM's massive internal parallelism and bandwidth to execute very wide operations. Performing a PuD operation involves activating multiple DRAM rows in quick succession or simultaneously, i.e., multiple-row activation. Multiple-row activation is fundamentally different from conventional memory access patterns that activate one DRAM row at a time. However, repeatedly activating even one DRAM row (e.g., RowHammer) can induce bitflips in unaccessed DRAM rows because modern DRAM is subject to read disturbance. Unfortunately, no prior work investigates the effects of multiple-row activation on DRAM read disturbance. In this paper, we present the first characterization study of read disturbance effects of multiple-row activation-based PuD (which we call PuDHammer) using 316 real DDR4 DRAM chips from four major DRAM manufacturers. Our detailed characterization show that 1) PuDHammer significantly exacerbates the read disturbance vulnerability, causing up to 158.58x reduction in the minimum hammer count required to induce the first bitflip ($HC_{first}$), compared to RowHammer, 2) PuDHammer is affected by various operational conditions and parameters, 3) combining RowHammer with PuDHammer is more effective than using RowHammer alone to induce read disturbance error, e.g., doing so reduces $HC_{first}$ by 1.66x on average, and 4) PuDHammer bypasses an in-DRAM RowHammer mitigation mechanism (Target Row Refresh) and induces more bitflips than RowHammer. To develop future robust PuD-enabled systems in the presence of PuDHammer, we 1) develop three countermeasures and 2) adapt and evaluate the state-of-the-art RowHammer mitigation standardized by industry, called Per Row Activation Counting (PRAC). We show that the adapted PRAC incurs large performance overheads (48.26%, on average).
- Abstract(参考訳): Processing-using-DRAM (PuD) は、DRAMの膨大な内部並列性と帯域幅を用いてデータ移動ボトルネックを緩和し、非常に広い操作を実行するための有望なパラダイムである。
PuD操作を実行するには、複数のDRAM行を高速に、あるいは同時にアクティベートする必要がある。
複数行のアクティベーションは、1つのDRAM行をアクティベートする従来のメモリアクセスパターンと根本的に異なる。
しかしながら、1つのDRAM行(例えばRowHammer)でも繰り返しアクティベートすることで、アクセスされていないDRAM行のビットフリップを誘導することができる。
残念なことに、DRAM読み出し障害に対するマルチローアクティベーションの影響について先行研究は行われていない。
本稿では,4大DRAMメーカの316個の実DDR4 DRAMチップを用いたPuD(PuDHammer)の読み出し障害効果を初めて評価する。
我々の詳細な特徴は、
1)PuDHammerはリード障害の脆弱性を著しく悪化させ、RowHammerと比較して最初のビットフリップ(HC_{first}$)を誘導するために必要な最小ハンマー数を最大158.58倍に削減する。
2)PuDHammerは様々な運用条件やパラメータの影響を受けます。
3) RowHammerとPuDHammerを組み合わせることは、読み取り障害エラーを誘発するためにRowHammer単独を使用するよりも効果的である。
4) PuDHammerは、DRAM内のRowHammer緩和機構(Target Row Refresh)をバイパスし、RowHammerよりも多くのビットフリップを誘導する。
PuDHammerの存在下での将来の堅牢なPuD対応システムを開発するために
1)3つの対策を策定し、
2)Par Row Activation Counting(PRAC)と呼ばれる業界によって標準化された最先端のRowHammer緩和を適応し、評価する。
適応されたPRACはパフォーマンスのオーバーヘッドが大きい(平均48.26%)。
関連論文リスト
- Understanding RowHammer Under Reduced Refresh Latency: Experimental Analysis of Real DRAM Chips and Implications on Future Solutions [6.157443107603247]
RowHammerはDRAMの読み出し障害機構で、DRAMセルの行(DRAM行)に繰り返しアクセスすると、物理的に近くのDRAM行(victim row)でビットフリップが誘導される。
より新しいDRAMチップ世代では、これらのメカニズムはより積極的に予防リフレッシュを行い、より大きなパフォーマンス、エネルギ、または面積オーバーヘッドを引き起こす。
実DRAMチップにおけるリフレッシュレイテンシとRowHammer特性の相互作用に関する厳密な実験を行った。
以上の結果から, 攻撃性緩和のための部分電荷復元(PaCRAM)は, 5つの最先端RowHammer緩和機構によって引き起こされる性能とエネルギーオーバーヘッドを低減することが示唆された。
論文 参考訳(メタデータ) (2025-02-17T12:39:03Z) - Mixture of Hidden-Dimensions Transformer [50.40325486463241]
隠れ次元の空間性について検討し、訓練されたトランスフォーマーがわずかなトークン次元しか利用していないことを観察する。
スパース条件付アクティベーションアーキテクチャであるMoHD(Mixture of Hidden Dimensions)を提案する。
50%のアクティベーションパラメータが減少し、3.7%のハイパフォーマンスを実現し、3倍のパラメータを一定のアクティベーションコストで拡張する。
論文 参考訳(メタデータ) (2024-12-07T13:15:22Z) - Enabling Efficient and Scalable DRAM Read Disturbance Mitigation via New Experimental Insights into Modern DRAM Chips [0.0]
ストレージ密度は、システムレベルの攻撃によって悪用される回路レベルの脆弱性であるDRAM読み取り障害を悪化させる。
既存の防御は効果がないか、違法に高価である。
1)DRAMベースのシステムの保護は、技術スケーリングが読み取り障害の脆弱性を増大させるにつれてコストが高くなり、2)既存のソリューションの多くはDRAM内部の独自知識に依存している。
論文 参考訳(メタデータ) (2024-08-27T13:12:03Z) - An Experimental Characterization of Combined RowHammer and RowPress Read Disturbance in Modern DRAM Chips [7.430668228518989]
我々は、RowHammerとRowPressを組み合わせたパターンを、3大DRAMメーカーすべてから84個の実DDR4 DRAMチップで特徴付けている。
以上の結果から,このRowHammerパターンとRowPressパターンの組み合わせは,最先端のRowPressパターンと比較して,最初のビットフリップを誘導するのに要する時間(最大46.1%高速)を著しく小さくすることがわかった。
その結果,両面パターンの2つの攻撃行のうちの1つからRowPressが引き起こした読み出し障害効果が,他方よりもはるかに重要であるという重要な仮説が得られた。
論文 参考訳(メタデータ) (2024-06-18T21:57:45Z) - RelayAttention for Efficient Large Language Model Serving with Long System Prompts [59.50256661158862]
本稿では,長いシステムプロンプトを含むLCMサービスの効率を向上させることを目的とする。
これらのシステムプロンプトの処理には、既存の因果注意アルゴリズムにおいて、大量のメモリアクセスが必要である。
本稿では,DRAMから入力トークンのバッチに対して,DRAMから隠れた状態を正確に1回読み取ることのできるアテンションアルゴリズムであるRelayAttentionを提案する。
論文 参考訳(メタデータ) (2024-02-22T18:58:28Z) - HiRE: High Recall Approximate Top-$k$ Estimation for Efficient LLM
Inference [68.59839755875252]
HiREは2つの新しいコンポーネントから構成される: (i) (i) (i) (i) (i) (i) (i) (i) (i) (i) (ii) DA-TOP-$k$: 効率的なマルチデバイス近似トップ-k$演算子) (i) (i) (i) (i) (i) (i) (i) DA-TOP-$k$演算子) 。
我々は、10億のパラメータモデルにおいて、HiREがソフトマックスとフィードフォワード層の両方に適用され、ほぼ一致した事前学習と下流の精度を実現し、1台のTPUv5eデバイスで1.47Times$の推論遅延を高速化することを示した。
論文 参考訳(メタデータ) (2024-02-14T18:04:36Z) - Read Disturbance in High Bandwidth Memory: A Detailed Experimental Study on HBM2 DRAM Chips [6.501197729222095]
高帯域メモリ(HBM)における読み出し障害(RowHammer,RowPress)の効果を実験的に実証し,未文書読み出し障害防御機構の内部動作を明らかにする。
2つのFPGAボードで6つのReal2 DRAMチップの詳細な特徴は、読み取り障害の脆弱性が2つの異なるチップ間で著しく異なることを示している。
我々は,より強力な読解障害攻撃とより効率的な防御機構を開発するために,我々の研究成果をどのように活用できるかを述べる。
論文 参考訳(メタデータ) (2023-10-23T08:01:48Z) - HyperAttention: Long-context Attention in Near-Linear Time [78.33061530066185]
本稿では,長期的文脈の複雑さの増大に伴う計算課題に対処するため,HyperAttentionという近似的な注意機構を提案する。
実証的には、大規模なエントリを特定するためにLocality Sensitive Hashing(LSH)を使用して、HyperAttentionは既存のメソッドよりも優れています。
各種長文長データセットにおけるHyperAttentionの実証的性能を検証した。
論文 参考訳(メタデータ) (2023-10-09T17:05:25Z) - DISTFLASHATTN: Distributed Memory-efficient Attention for Long-context LLMs Training [82.06732962485754]
FlashAttentionは、1つのGPU上でのトレーニングトランスフォーマーベースの大規模言語モデル(LLM)において、2次ピークメモリの使用を線形に削減する。
本研究では,長期LLM学習に最適化されたメモリ効率の高い注意機構であるDisTFLASHATTNを紹介する。
最近のRing AttentionやDeepSpeed-Ulyssesと比較して、1.67xと1.26 - 1.88xのスピードアップを実現している。
論文 参考訳(メタデータ) (2023-10-05T03:47:57Z) - RowPress: Amplifying Read Disturbance in Modern DRAM Chips [7.046976177695823]
RowPressは、DRAM行を長時間開いておくことで、メモリアイソレーションを壊します。
極端な場合、RowPressは隣接する行が一度だけアクティベートされたときにDRAM行のビットフリップを誘導する。
164個の実DDR4 DRAMチップの詳細な特徴は、RowPressが3大DRAMメーカーのすべてのチップに影響を与えることを示している。
論文 参考訳(メタデータ) (2023-06-29T16:09:56Z) - DBA: Efficient Transformer with Dynamic Bilinear Low-Rank Attention [53.02648818164273]
動的双線形低ランク注意(DBA)という,効率的かつ効果的な注意機構を提案する。
DBAは入力感度の動的射影行列によってシーケンス長を圧縮し、線形時間と空間の複雑さを実現する。
様々なシーケンス長条件のタスクに対する実験は、DBAが最先端のパフォーマンスを達成することを示す。
論文 参考訳(メタデータ) (2022-11-24T03:06:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。