Equitable Electronic Health Record Prediction with FAME: Fairness-Aware Multimodal Embedding
- URL: http://arxiv.org/abs/2506.13104v1
- Date: Mon, 16 Jun 2025 05:23:42 GMT
- Title: Equitable Electronic Health Record Prediction with FAME: Fairness-Aware Multimodal Embedding
- Authors: Nikkie Hooman, Zhongjie Wu, Eric C. Larson, Mehak Gupta,
- Abstract summary: We introduce FAME (Fairness-Aware Multimodal Embeddings), a framework that explicitly weights each modality according to its fairness contribution.<n>We leverage the Error Distribution Disparity Index (EDDI) to measure fairness across subgroups.<n>We demonstrate FAME's effectiveness in terms of performance and fairness compared with other baselines.
- Score: 4.383326688441244
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Electronic Health Record (EHR) data encompass diverse modalities -- text, images, and medical codes -- that are vital for clinical decision-making. To process these complex data, multimodal AI (MAI) has emerged as a powerful approach for fusing such information. However, most existing MAI models optimize for better prediction performance, potentially reinforcing biases across patient subgroups. Although bias-reduction techniques for multimodal models have been proposed, the individual strengths of each modality and their interplay in both reducing bias and optimizing performance remain underexplored. In this work, we introduce FAME (Fairness-Aware Multimodal Embeddings), a framework that explicitly weights each modality according to its fairness contribution. FAME optimizes both performance and fairness by incorporating a combined loss function. We leverage the Error Distribution Disparity Index (EDDI) to measure fairness across subgroups and propose a sign-agnostic aggregation method to balance fairness across subgroups, ensuring equitable model outcomes. We evaluate FAME with BEHRT and BioClinicalBERT, combining structured and unstructured EHR data, and demonstrate its effectiveness in terms of performance and fairness compared with other baselines across multiple EHR prediction tasks.
Related papers
- Benchmarking Foundation Models with Multimodal Public Electronic Health Records [24.527782376051693]
We present a benchmark that evaluates the performance, fairness, and interpretability of foundation models.<n>We developed a standardized data processing pipeline that harmonizes heterogeneous clinical records into an analysis-ready format.<n>Our findings demonstrate that incorporating multiple data modalities leads to consistent improvements in predictive performance without introducing additional bias.
arXiv Detail & Related papers (2025-07-20T05:08:28Z) - MITA: Bridging the Gap between Model and Data for Test-time Adaptation [68.62509948690698]
Test-Time Adaptation (TTA) has emerged as a promising paradigm for enhancing the generalizability of models.
We propose Meet-In-The-Middle based MITA, which introduces energy-based optimization to encourage mutual adaptation of the model and data from opposing directions.
arXiv Detail & Related papers (2024-10-12T07:02:33Z) - DrFuse: Learning Disentangled Representation for Clinical Multi-Modal
Fusion with Missing Modality and Modal Inconsistency [18.291267748113142]
We propose DrFuse to achieve effective clinical multi-modal fusion.
We address the missing modality issue by disentangling the features shared across modalities and those unique within each modality.
We validate the proposed method using real-world large-scale datasets, MIMIC-IV and MIMIC-CXR.
arXiv Detail & Related papers (2024-03-10T12:41:34Z) - Fairness-Aware Interpretable Modeling (FAIM) for Trustworthy Machine
Learning in Healthcare [6.608905791768002]
We propose Fairness-Aware Interpretable Modeling (FAIM) to improve model fairness without compromising performance.
FAIM features an interactive interface to identify a "fairer" model from a set of high-performing models.
We show FAIM models not only exhibited satisfactory discriminatory performance but also significantly mitigated biases as measured by well-established fairness metrics.
arXiv Detail & Related papers (2024-03-08T11:51:00Z) - FairEHR-CLP: Towards Fairness-Aware Clinical Predictions with Contrastive Learning in Multimodal Electronic Health Records [15.407593899656762]
We present FairEHR-CLP: a framework for fairness-aware Clinical Predictions with Contrastive Learning in EHRs.
FairEHR-CLP operates through a two-stage process, utilizing patient demographics, longitudinal data, and clinical notes.
We introduce a novel fairness metric to effectively measure error rate disparities across subgroups.
arXiv Detail & Related papers (2024-02-01T19:24:45Z) - Ambiguous Medical Image Segmentation using Diffusion Models [60.378180265885945]
We introduce a single diffusion model-based approach that produces multiple plausible outputs by learning a distribution over group insights.
Our proposed model generates a distribution of segmentation masks by leveraging the inherent sampling process of diffusion.
Comprehensive results show that our proposed approach outperforms existing state-of-the-art ambiguous segmentation networks.
arXiv Detail & Related papers (2023-04-10T17:58:22Z) - PheME: A deep ensemble framework for improving phenotype prediction from
multi-modal data [42.56953523499849]
We present PheME, an Ensemble framework using Multi-modality data of structured EHRs and unstructured clinical notes for accurate Phenotype prediction.
We leverage ensemble learning to combine outputs from single-modal models and multi-modal models to improve phenotype predictions.
arXiv Detail & Related papers (2023-03-19T23:41:04Z) - Chasing Fairness Under Distribution Shift: A Model Weight Perturbation
Approach [72.19525160912943]
We first theoretically demonstrate the inherent connection between distribution shift, data perturbation, and model weight perturbation.
We then analyze the sufficient conditions to guarantee fairness for the target dataset.
Motivated by these sufficient conditions, we propose robust fairness regularization (RFR)
arXiv Detail & Related papers (2023-03-06T17:19:23Z) - Trustworthy Multimodal Regression with Mixture of Normal-inverse Gamma
Distributions [91.63716984911278]
We introduce a novel Mixture of Normal-Inverse Gamma distributions (MoNIG) algorithm, which efficiently estimates uncertainty in principle for adaptive integration of different modalities and produces a trustworthy regression result.
Experimental results on both synthetic and different real-world data demonstrate the effectiveness and trustworthiness of our method on various multimodal regression tasks.
arXiv Detail & Related papers (2021-11-11T14:28:12Z) - Adversarial Sample Enhanced Domain Adaptation: A Case Study on
Predictive Modeling with Electronic Health Records [57.75125067744978]
We propose a data augmentation method to facilitate domain adaptation.
adversarially generated samples are used during domain adaptation.
Results confirm the effectiveness of our method and the generality on different tasks.
arXiv Detail & Related papers (2021-01-13T03:20:20Z) - Causal Feature Selection for Algorithmic Fairness [61.767399505764736]
We consider fairness in the integration component of data management.
We propose an approach to identify a sub-collection of features that ensure the fairness of the dataset.
arXiv Detail & Related papers (2020-06-10T20:20:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.