A Comprehensive Survey on Deep Learning Solutions for 3D Flood Mapping
- URL: http://arxiv.org/abs/2506.13201v1
- Date: Mon, 16 Jun 2025 08:06:18 GMT
- Title: A Comprehensive Survey on Deep Learning Solutions for 3D Flood Mapping
- Authors: Wenfeng Jia, Bin Liang, Yuxi Liu, Muhammad Arif Khan, Lihong Zheng,
- Abstract summary: Flooding remains a major global challenge, worsened by climate change and urbanization, demanding advanced solutions for effective disaster management.<n>While traditional 2D flood mapping techniques provide limited insights, 3D flood mapping, powered by deep learning (DL), offers enhanced capabilities by integrating flood extent and depth.<n>This paper presents a comprehensive survey of deep learning-based 3D flood mapping, emphasizing its advancements over 2D maps.
- Score: 6.088214521097484
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Flooding remains a major global challenge, worsened by climate change and urbanization, demanding advanced solutions for effective disaster management. While traditional 2D flood mapping techniques provide limited insights, 3D flood mapping, powered by deep learning (DL), offers enhanced capabilities by integrating flood extent and depth. This paper presents a comprehensive survey of deep learning-based 3D flood mapping, emphasizing its advancements over 2D maps by integrating flood extent and depth for effective disaster management and urban planning. The survey categorizes deep learning techniques into task decomposition and end-to-end approaches, applicable to both static and dynamic flood features. We compare key DL architectures, highlighting their respective roles in enhancing prediction accuracy and computational efficiency. Additionally, this work explores diverse data sources such as digital elevation models, satellite imagery, rainfall, and simulated data, outlining their roles in 3D flood mapping. The applications reviewed range from real-time flood prediction to long-term urban planning and risk assessment. However, significant challenges persist, including data scarcity, model interpretability, and integration with traditional hydrodynamic models. This survey concludes by suggesting future directions to address these limitations, focusing on enhanced datasets, improved models, and policy implications for flood management. This survey aims to guide researchers and practitioners in leveraging DL techniques for more robust and reliable 3D flood mapping, fostering improved flood management strategies.
Related papers
- Always Clear Depth: Robust Monocular Depth Estimation under Adverse Weather [48.65180004211851]
We present a robust monocular depth estimation method called textbfACDepth from the perspective of high-quality training data generation and domain adaptation.<n>Specifically, we introduce a one-step diffusion model for generating samples that simulate adverse weather conditions, constructing a multi-tuple degradation dataset during training.<n>We elaborate on a multi-granularity knowledge distillation strategy (MKD) that encourages the student network to absorb knowledge from both the teacher model and pretrained Depth Anything V2.
arXiv Detail & Related papers (2025-05-18T02:30:47Z) - AI Driven Water Segmentation with deep learning models for Enhanced Flood Monitoring [0.0]
Flooding is a major natural hazard causing significant fatalities and economic losses annually, with increasing frequency due to climate change.<n>This study compares the performance of three deep learning models UNet, ResNet, and DeepLabv3 for pixelwise water segmentation to aid in flood detection, utilizing images from drones, in field observations, and social media.
arXiv Detail & Related papers (2025-01-14T17:26:02Z) - Urban Flood Mapping Using Satellite Synthetic Aperture Radar Data: A Review of Characteristics, Approaches and Datasets [17.621744717937993]
This study focuses on the challenges and advancements in SAR-based urban flood mapping.
It specifically addresses the limitations of spatial and temporal resolution in SAR data and discusses the essential pre-processing steps.
It highlights a lack of open-access SAR datasets for urban flood mapping, hindering development in advanced deep learning-based methods.
arXiv Detail & Related papers (2024-11-06T09:30:13Z) - Deep Vision-Based Framework for Coastal Flood Prediction Under Climate Change Impacts and Shoreline Adaptations [0.3413711585591077]
We present a systematic framework for training high-fidelity Deep Vision-based coastal flood prediction models in low-data settings.
We also introduce a deep CNN architecture tailored specifically to the coastal flood prediction problem at hand.
The performance of the developed DL models is validated against commonly adopted geostatistical regression methods.
arXiv Detail & Related papers (2024-06-06T19:54:34Z) - UrbanSARFloods: Sentinel-1 SLC-Based Benchmark Dataset for Urban and Open-Area Flood Mapping [24.857739769719778]
UrbanSARFloods is a dataset featuring pre-processed Sentinel-1 intensity data and interferometric coherence imagery acquired before and during flood events.
It contains 8,879 $512times 512$ chips covering 807,500 $km2$ across 20 land cover classes and 5, spanning 18 flood events.
We used UrbanSARFloods to benchmark existing state-of-the-art convolutional neural networks (CNNs) for segmenting open and urban flood areas.
arXiv Detail & Related papers (2024-06-06T14:28:43Z) - GEOcc: Geometrically Enhanced 3D Occupancy Network with Implicit-Explicit Depth Fusion and Contextual Self-Supervision [49.839374549646884]
This paper presents GEOcc, a Geometric-Enhanced Occupancy network tailored for vision-only surround-view perception.<n>Our approach achieves State-Of-The-Art performance on the Occ3D-nuScenes dataset with the least image resolution needed and the most weightless image backbone.
arXiv Detail & Related papers (2024-05-17T07:31:20Z) - OccNeRF: Advancing 3D Occupancy Prediction in LiDAR-Free Environments [77.0399450848749]
We propose an OccNeRF method for training occupancy networks without 3D supervision.
We parameterize the reconstructed occupancy fields and reorganize the sampling strategy to align with the cameras' infinite perceptive range.
For semantic occupancy prediction, we design several strategies to polish the prompts and filter the outputs of a pretrained open-vocabulary 2D segmentation model.
arXiv Detail & Related papers (2023-12-14T18:58:52Z) - Robust Geometry-Preserving Depth Estimation Using Differentiable
Rendering [93.94371335579321]
We propose a learning framework that trains models to predict geometry-preserving depth without requiring extra data or annotations.
Comprehensive experiments underscore our framework's superior generalization capabilities.
Our innovative loss functions empower the model to autonomously recover domain-specific scale-and-shift coefficients.
arXiv Detail & Related papers (2023-09-18T12:36:39Z) - An evaluation of deep learning models for predicting water depth
evolution in urban floods [59.31940764426359]
We compare different deep learning models for prediction of water depth at high spatial resolution.
Deep learning models are trained to reproduce the data simulated by the CADDIES cellular-automata flood model.
Our results show that the deep learning models present in general lower errors compared to the other methods.
arXiv Detail & Related papers (2023-02-20T16:08:54Z) - Physics-informed GANs for Coastal Flood Visualization [65.54626149826066]
We create a deep learning pipeline that generates visual satellite images of current and future coastal flooding.
By evaluating the imagery relative to physics-based flood maps, we find that our proposed framework outperforms baseline models in both physical-consistency and photorealism.
While this work focused on the visualization of coastal floods, we envision the creation of a global visualization of how climate change will shape our earth.
arXiv Detail & Related papers (2020-10-16T02:15:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.