Deep Diffusion Models and Unsupervised Hyperspectral Unmixing for Realistic Abundance Map Synthesis
- URL: http://arxiv.org/abs/2506.13484v1
- Date: Mon, 16 Jun 2025 13:42:51 GMT
- Title: Deep Diffusion Models and Unsupervised Hyperspectral Unmixing for Realistic Abundance Map Synthesis
- Authors: Martina Pastorino, Michael Alibani, Nicola Acito, Gabriele Moser,
- Abstract summary: Our framework integrates blind linear hyperspectral unmixing with state-of-the-art diffusion models to enhance the realism and diversity of synthetic abundance maps.<n>We validate our approach using real hyperspectral imagery from the PRISMA space mission for Earth observation.
- Score: 0.2812395851874055
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper presents a novel methodology for generating realistic abundance maps from hyperspectral imagery using an unsupervised, deep-learning-driven approach. Our framework integrates blind linear hyperspectral unmixing with state-of-the-art diffusion models to enhance the realism and diversity of synthetic abundance maps. First, we apply blind unmixing to extract endmembers and abundance maps directly from raw hyperspectral data. These abundance maps then serve as inputs to a diffusion model, which acts as a generative engine to synthesize highly realistic spatial distributions. Diffusion models have recently revolutionized image synthesis by offering superior performance, flexibility, and stability, making them well-suited for high-dimensional spectral data. By leveraging this combination of physically interpretable unmixing and deep generative modeling, our approach enables the simulation of hyperspectral sensor outputs under diverse imaging conditions--critical for data augmentation, algorithm benchmarking, and model evaluation in hyperspectral analysis. Notably, our method is entirely unsupervised, ensuring adaptability to different datasets without the need for labeled training data. We validate our approach using real hyperspectral imagery from the PRISMA space mission for Earth observation, demonstrating its effectiveness in producing realistic synthetic abundance maps that capture the spatial and spectral characteristics of natural scenes.
Related papers
- Provable Maximum Entropy Manifold Exploration via Diffusion Models [58.89696361871563]
Exploration is critical for solving real-world decision-making problems such as scientific discovery.<n>We introduce a novel framework that casts exploration as entropy over approximate data manifold implicitly defined by a pre-trained diffusion model.<n>We develop an algorithm based on mirror descent that solves the exploration problem as sequential fine-tuning of a pre-trained diffusion model.
arXiv Detail & Related papers (2025-06-18T11:59:15Z) - Consistent World Models via Foresight Diffusion [56.45012929930605]
We argue that a key bottleneck in learning consistent diffusion-based world models lies in the suboptimal predictive ability.<n>We propose Foresight Diffusion (ForeDiff), a diffusion-based world modeling framework that enhances consistency by decoupling condition understanding from target denoising.
arXiv Detail & Related papers (2025-05-22T10:01:59Z) - Boosting Zero-shot Stereo Matching using Large-scale Mixed Images Sources in the Real World [8.56549004133167]
Stereo matching methods rely on dense pixel-wise ground truth labels.<n>The scarcity of labeled data and domain gaps between synthetic and real-world images pose notable challenges.<n>We propose a novel framework, textbfBooSTer, that leverages both vision foundation models and large-scale mixed image sources.
arXiv Detail & Related papers (2025-05-13T14:24:38Z) - Virtual-mask Informed Prior for Sparse-view Dual-Energy CT Reconstruction [9.118267161536087]
We propose a dual-domain virtual-mask in-formed diffusion model for sparse-view reconstruction by leveraging the high inter-channel correlation in perturbations.<n> Experimental results indicated that the present method exhibits excellent performance across multiple datasets.
arXiv Detail & Related papers (2025-04-10T13:54:26Z) - Language-Informed Hyperspectral Image Synthesis for Imbalanced-Small Sample Classification via Semi-Supervised Conditional Diffusion Model [1.9746060146273674]
This paper proposes Txt2HSI-LDM(VAE), a novel language-informed hyperspectral image synthesis method.<n>To address the high-dimensionality of hyperspectral data, a universal variational autoencoder (VAE) is designed to map the data into a low-dimensional latent space.<n>VAE decodes HSI from latent space generated by the diffusion model with the language conditions as input.
arXiv Detail & Related papers (2025-02-27T02:35:49Z) - Generative Geostatistical Modeling from Incomplete Well and Imaged Seismic Observations with Diffusion Models [0.24578723416255752]
We introduce a novel approach to synthesizing subsurface velocity models using diffusion generative models.
Our method leverages incomplete well and seismic observations to produce high-fidelity velocity samples without requiring fully sampled training datasets.
arXiv Detail & Related papers (2024-05-16T20:30:43Z) - Deep Domain Adaptation: A Sim2Real Neural Approach for Improving Eye-Tracking Systems [80.62854148838359]
Eye image segmentation is a critical step in eye tracking that has great influence over the final gaze estimate.
We use dimensionality-reduction techniques to measure the overlap between the target eye images and synthetic training data.
Our methods result in robust, improved performance when tackling the discrepancy between simulation and real-world data samples.
arXiv Detail & Related papers (2024-03-23T22:32:06Z) - Synthetic location trajectory generation using categorical diffusion
models [50.809683239937584]
Diffusion models (DPMs) have rapidly evolved to be one of the predominant generative models for the simulation of synthetic data.
We propose using DPMs for the generation of synthetic individual location trajectories (ILTs) which are sequences of variables representing physical locations visited by individuals.
arXiv Detail & Related papers (2024-02-19T15:57:39Z) - SatDM: Synthesizing Realistic Satellite Image with Semantic Layout
Conditioning using Diffusion Models [0.0]
Denoising Diffusion Probabilistic Models (DDPMs) have demonstrated significant promise in synthesizing realistic images from semantic layouts.
In this paper, a conditional DDPM model capable of taking a semantic map and generating high-quality, diverse, and correspondingly accurate satellite images is implemented.
The effectiveness of our proposed model is validated using a meticulously labeled dataset introduced within the context of this study.
arXiv Detail & Related papers (2023-09-28T19:39:13Z) - Deceptive-NeRF/3DGS: Diffusion-Generated Pseudo-Observations for High-Quality Sparse-View Reconstruction [60.52716381465063]
We introduce Deceptive-NeRF/3DGS to enhance sparse-view reconstruction with only a limited set of input images.
Specifically, we propose a deceptive diffusion model turning noisy images rendered from few-view reconstructions into high-quality pseudo-observations.
Our system progressively incorporates diffusion-generated pseudo-observations into the training image sets, ultimately densifying the sparse input observations by 5 to 10 times.
arXiv Detail & Related papers (2023-05-24T14:00:32Z) - Hierarchical Integration Diffusion Model for Realistic Image Deblurring [71.76410266003917]
Diffusion models (DMs) have been introduced in image deblurring and exhibited promising performance.
We propose the Hierarchical Integration Diffusion Model (HI-Diff), for realistic image deblurring.
Experiments on synthetic and real-world blur datasets demonstrate that our HI-Diff outperforms state-of-the-art methods.
arXiv Detail & Related papers (2023-05-22T12:18:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.