Graph-Convolutional-Beta-VAE for Synthetic Abdominal Aorta Aneurysm Generation
- URL: http://arxiv.org/abs/2506.13628v2
- Date: Tue, 17 Jun 2025 04:36:55 GMT
- Title: Graph-Convolutional-Beta-VAE for Synthetic Abdominal Aorta Aneurysm Generation
- Authors: Francesco Fabbri, Martino Andrea Scarpolini, Angelo Iollo, Francesco Viola, Francesco Tudisco,
- Abstract summary: This study presents a beta-Variational Autoencoder Graph Convolutional Neural Network framework for generating synthetic Abdominal Aorta Aneurysms (AAA)<n>Our approach extracts key anatomical features and captures complex statistical relationships within a compact disentangled latent space.<n>The resulting synthetic AAA dataset preserves patient privacy while providing a scalable foundation for medical research, device testing, and computational modeling.
- Score: 4.363232795241618
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Synthetic data generation plays a crucial role in medical research by mitigating privacy concerns and enabling large-scale patient data analysis. This study presents a beta-Variational Autoencoder Graph Convolutional Neural Network framework for generating synthetic Abdominal Aorta Aneurysms (AAA). Using a small real-world dataset, our approach extracts key anatomical features and captures complex statistical relationships within a compact disentangled latent space. To address data limitations, low-impact data augmentation based on Procrustes analysis was employed, preserving anatomical integrity. The generation strategies, both deterministic and stochastic, manage to enhance data diversity while ensuring realism. Compared to PCA-based approaches, our model performs more robustly on unseen data by capturing complex, nonlinear anatomical variations. This enables more comprehensive clinical and statistical analyses than the original dataset alone. The resulting synthetic AAA dataset preserves patient privacy while providing a scalable foundation for medical research, device testing, and computational modeling.
Related papers
- Deep Survival Analysis in Multimodal Medical Data: A Parametric and Probabilistic Approach with Competing Risks [47.19194118883552]
We introduce a multimodal deep learning framework for survival analysis capable of modeling both single and competing risks scenarios.<n>We propose SAMVAE (Survival Analysis Multimodal Variational Autoencoder), a novel deep learning architecture designed for survival prediction.
arXiv Detail & Related papers (2025-07-10T14:29:48Z) - Adaptable Cardiovascular Disease Risk Prediction from Heterogeneous Data using Large Language Models [70.64969663547703]
AdaCVD is an adaptable CVD risk prediction framework built on large language models extensively fine-tuned on over half a million participants from the UK Biobank.<n>It addresses key clinical challenges across three dimensions: it flexibly incorporates comprehensive yet variable patient information; it seamlessly integrates both structured data and unstructured text; and it rapidly adapts to new patient populations using minimal additional data.
arXiv Detail & Related papers (2025-05-30T14:42:02Z) - A Statistical Approach for Synthetic EEG Data Generation [2.5648452174203062]
This study proposes a method combining correlation analysis and random sampling to generate realistic synthetic EEG data.<n>A Random Forest model trained to distinguish synthetic from real EEG performs at chance level, indicating high fidelity.<n>This method provides a scalable, privacy-preserving approach for augmenting EEG datasets, enabling more efficient model training in mental health research.
arXiv Detail & Related papers (2025-04-22T06:48:42Z) - Prototype-Guided Diffusion for Digital Pathology: Achieving Foundation Model Performance with Minimal Clinical Data [6.318463500874778]
We propose a prototype-guided diffusion model to generate high-fidelity synthetic pathology data at scale.<n>Our approach ensures biologically and diagnostically meaningful variations in the generated data.<n>We demonstrate that self-supervised features trained on our synthetic dataset achieve competitive performance despite using 60x-760x less data than models trained on large real-world datasets.
arXiv Detail & Related papers (2025-04-15T21:17:39Z) - Grading and Anomaly Detection for Automated Retinal Image Analysis using Deep Learning [0.5999777817331317]
The study conducted a systematic literature review using the PRISMA analysis and 62 articles has been investigated in the research.
The diverse deep-learning techniques that are employed for detecting DR lesions are discussed.
arXiv Detail & Related papers (2024-09-25T08:13:39Z) - Machine Learning for ALSFRS-R Score Prediction: Making Sense of the Sensor Data [44.99833362998488]
Amyotrophic Lateral Sclerosis (ALS) is a rapidly progressive neurodegenerative disease that presents individuals with limited treatment options.
The present investigation, spearheaded by the iDPP@CLEF 2024 challenge, focuses on utilizing sensor-derived data obtained through an app.
arXiv Detail & Related papers (2024-07-10T19:17:23Z) - Unconditional Latent Diffusion Models Memorize Patient Imaging Data: Implications for Openly Sharing Synthetic Data [2.04850174048739]
We train latent diffusion models on CT, MR, and X-ray datasets for synthetic data generation.<n>We then detect the amount of training data memorized utilizing our novel self-supervised copy detection approach.<n>Our findings show a surprisingly high degree of patient data memorization across all datasets.
arXiv Detail & Related papers (2024-02-01T22:58:21Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
This paper introduces a novel, end-to-end diffusion-based risk prediction model, named MedDiffusion.
It enhances risk prediction performance by creating synthetic patient data during training to enlarge sample space.
It discerns hidden relationships between patient visits using a step-wise attention mechanism, enabling the model to automatically retain the most vital information for generating high-quality data.
arXiv Detail & Related papers (2023-10-04T01:36:30Z) - Source-Free Collaborative Domain Adaptation via Multi-Perspective
Feature Enrichment for Functional MRI Analysis [55.03872260158717]
Resting-state MRI functional (rs-fMRI) is increasingly employed in multi-site research to aid neurological disorder analysis.
Many methods have been proposed to reduce fMRI heterogeneity between source and target domains.
But acquiring source data is challenging due to concerns and/or data storage burdens in multi-site studies.
We design a source-free collaborative domain adaptation framework for fMRI analysis, where only a pretrained source model and unlabeled target data are accessible.
arXiv Detail & Related papers (2023-08-24T01:30:18Z) - Synthetic data generation for a longitudinal cohort study -- Evaluation,
method extension and reproduction of published data analysis results [0.32593385688760446]
In the health sector, access to individual-level data is often challenging due to privacy concerns.
A promising alternative is the generation of fully synthetic data.
In this study, we use a state-of-the-art synthetic data generation method.
arXiv Detail & Related papers (2023-05-12T13:13:55Z) - Bootstrapping Your Own Positive Sample: Contrastive Learning With
Electronic Health Record Data [62.29031007761901]
This paper proposes a novel contrastive regularized clinical classification model.
We introduce two unique positive sampling strategies specifically tailored for EHR data.
Our framework yields highly competitive experimental results in predicting the mortality risk on real-world COVID-19 EHR data.
arXiv Detail & Related papers (2021-04-07T06:02:04Z) - Modeling Shared Responses in Neuroimaging Studies through MultiView ICA [94.31804763196116]
Group studies involving large cohorts of subjects are important to draw general conclusions about brain functional organization.
We propose a novel MultiView Independent Component Analysis model for group studies, where data from each subject are modeled as a linear combination of shared independent sources plus noise.
We demonstrate the usefulness of our approach first on fMRI data, where our model demonstrates improved sensitivity in identifying common sources among subjects.
arXiv Detail & Related papers (2020-06-11T17:29:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.