論文の概要: Hybrid Meta-Learning Framework for Anomaly Forecasting in Nonlinear Dynamical Systems via Physics-Inspired Simulation and Deep Ensembles
- arxiv url: http://arxiv.org/abs/2506.13828v1
- Date: Sun, 15 Jun 2025 21:17:34 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-18 17:34:59.175784
- Title: Hybrid Meta-Learning Framework for Anomaly Forecasting in Nonlinear Dynamical Systems via Physics-Inspired Simulation and Deep Ensembles
- Title(参考訳): 物理インスパイアされたシミュレーションとディープアンサンブルによる非線形力学系における異常予測のためのハイブリッドメタラーニングフレームワーク
- Authors: Abdullah Burkan Bereketoglu,
- Abstract要約: 非線形システムにおける予測・異常検出のためのハイブリッドメタ学習フレームワークを提案する。
このフレームワークは、非線形システムにおける早期欠陥の同定と予測監視に対する広範なデータ駆動型アプローチを提供する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We propose a hybrid meta-learning framework for forecasting and anomaly detection in nonlinear dynamical systems characterized by nonstationary and stochastic behavior. The approach integrates a physics-inspired simulator that captures nonlinear growth-relaxation dynamics with random perturbations, representative of many complex physical, industrial, and cyber-physical systems. We use CNN-LSTM architectures for spatio-temporal feature extraction, Variational Autoencoders (VAE) for unsupervised anomaly scoring, and Isolation Forests for residual-based outlier detection in addition to a Dual-Stage Attention Recurrent Neural Network (DA-RNN) for one-step forecasting on top of the generated simulation data. To create composite anomaly forecasts, these models are combined using a meta-learner that combines forecasting outputs, reconstruction errors, and residual scores. The hybrid ensemble performs better than standalone models in anomaly localization, generalization, and robustness to nonlinear deviations, according to simulation-based experiments. The framework provides a broad, data-driven approach to early defect identification and predictive monitoring in nonlinear systems, which may be applied to a variety of scenarios where complete physical models might not be accessible.
- Abstract(参考訳): 非定常的・確率的挙動を特徴とする非線形力学系における予測・異常検出のためのハイブリッドメタラーニングフレームワークを提案する。
このアプローチは、多くの複雑な物理的、産業的、サイバー物理系の代表であるランダムな摂動を伴う非線形成長緩和ダイナミクスを捉える、物理学に着想を得たシミュレータを統合する。
我々は、時空間の特徴抽出にCNN-LSTMアーキテクチャ、教師なしの異常スコアリングにVAE(変動オートエンコーダ)、残差に基づく外れ値検出に分離フォレスト、生成したシミュレーションデータの上に一段階予測にDA-RNN(Dual-Stage Attention Recurrent Neural Network)を用いる。
複合異常予測を作成するために、これらのモデルは、予測出力、再構成エラー、残差スコアを組み合わせたメタラーナーを用いて結合される。
シミュレーションベースの実験によると、ハイブリッドアンサンブルは異常な局所化、一般化、非線形偏差に対する堅牢性においてスタンドアロンモデルよりも優れた性能を発揮する。
このフレームワークは、非線形システムにおける早期欠陥識別と予測監視に対する幅広いデータ駆動のアプローチを提供し、完全な物理モデルにアクセスできないさまざまなシナリオに適用することができる。
関連論文リスト
- Certified Neural Approximations of Nonlinear Dynamics [52.79163248326912]
安全クリティカルな文脈では、神経近似の使用は、基礎となるシステムとの密接性に公式な境界を必要とする。
本稿では,認証された一階述語モデルに基づく新しい,適応的で並列化可能な検証手法を提案する。
論文 参考訳(メタデータ) (2025-05-21T13:22:20Z) - Hybrid Adaptive Modeling using Neural Networks Trained with Nonlinear Dynamics Based Features [5.652228574188242]
本稿では,非線形動的モデリングから情報を明らかにし,それをデータベースモデルに組み込むことにより,標準手法から逸脱する新しいアプローチを提案する。
摂動法による非線形力学現象を明示的に取り入れることにより、予測能力はブルートフォース数値シミュレーションから得られた知識と比較してより現実的で洞察力が高い。
論文 参考訳(メタデータ) (2025-01-21T02:38:28Z) - eXponential FAmily Dynamical Systems (XFADS): Large-scale nonlinear Gaussian state-space modeling [9.52474299688276]
非線形状態空間グラフィカルモデルのための低ランク構造化変分オートエンコーダフレームワークを提案する。
我々のアプローチは、より予測的な生成モデルを学ぶ能力を一貫して示している。
論文 参考訳(メタデータ) (2024-03-03T02:19:49Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
実験データから未知のパラメータを復元するために、モデルハミルトンのシミュレーションデータを模倣するために訓練されたニューラルネットワークと自動微分を組み合わせた人工知能フレームワークを開発する。
そこで本研究では, 実時間から多次元散乱データに適用可能な微分可能なモデルを1回だけ構築し, 訓練する能力について述べる。
論文 参考訳(メタデータ) (2023-04-08T07:55:36Z) - Capturing Actionable Dynamics with Structured Latent Ordinary
Differential Equations [68.62843292346813]
本稿では,その潜在表現内でのシステム入力の変動をキャプチャする構造付き潜在ODEモデルを提案する。
静的変数仕様に基づいて,本モデルではシステムへの入力毎の変動要因を学習し,潜在空間におけるシステム入力の影響を分離する。
論文 参考訳(メタデータ) (2022-02-25T20:00:56Z) - Using Data Assimilation to Train a Hybrid Forecast System that Combines
Machine-Learning and Knowledge-Based Components [52.77024349608834]
利用可能なデータがノイズの多い部分測定の場合,カオスダイナミクスシステムのデータ支援予測の問題を検討する。
動的システムの状態の部分的測定を用いることで、不完全な知識ベースモデルによる予測を改善するために機械学習モデルを訓練できることを示す。
論文 参考訳(メタデータ) (2021-02-15T19:56:48Z) - Anomaly Detection of Time Series with Smoothness-Inducing Sequential
Variational Auto-Encoder [59.69303945834122]
Smoothness-Inducing Sequential Variational Auto-Encoder (SISVAE) モデルを提案する。
我々のモデルは、フレキシブルニューラルネットワークを用いて各タイムスタンプの平均と分散をパラメータ化する。
合成データセットと公開実世界のベンチマークの両方において,本モデルの有効性を示す。
論文 参考訳(メタデータ) (2021-02-02T06:15:15Z) - Identification of Probability weighted ARX models with arbitrary domains [75.91002178647165]
PieceWise Affineモデルは、ハイブリッドシステムの他のクラスに対する普遍近似、局所線型性、同値性を保証する。
本研究では,任意の領域を持つ固有入力モデル(NPWARX)を用いたPieceWise Auto Regressiveの同定に着目する。
このアーキテクチャは、機械学習の分野で開発されたMixture of Expertの概念に従って考案された。
論文 参考訳(メタデータ) (2020-09-29T12:50:33Z) - LSTM-based Anomaly Detection for Non-linear Dynamical System [11.797156206007612]
本稿では,Long Short-Term Memory (LSTM)に基づく非線形力学系における新しい異常検出手法を提案する。
まず、データ前処理、多段階予測、異常検出を含む非線形力学系におけるLSTMに基づく異常検出の枠組みについて述べる。
提案手法は,壁面せん断応力データセットにおいて従来の手法よりも高い精度で予測できる。
論文 参考訳(メタデータ) (2020-06-05T01:09:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。