論文の概要: PnP-DA: Towards Principled Plug-and-Play Integration of Variational Data Assimilation and Generative Models
- arxiv url: http://arxiv.org/abs/2508.00325v1
- Date: Fri, 01 Aug 2025 05:19:19 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-04 18:08:53.744243
- Title: PnP-DA: Towards Principled Plug-and-Play Integration of Variational Data Assimilation and Generative Models
- Title(参考訳): PnP-DA: 変分データ同化と生成モデルの原理的プラグ・アンド・プレイ統合を目指して
- Authors: Yongquan Qu, Matthieu Blanke, Sara Shamekh, Pierre Gentine,
- Abstract要約: 地球系のモデリングは科学計算における根本的な課題である。
最も強力なAIや物理ベースの予測システムでさえ、徐々にエラーが蓄積される。
本稿では,背景予測に基づいて事前学習した事前条件を1つのフォワードパスで,軽量で勾配に基づく解析更新を置き換えるPlug-and-Playアルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 0.1052166918701117
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Earth system modeling presents a fundamental challenge in scientific computing: capturing complex, multiscale nonlinear dynamics in computationally efficient models while minimizing forecast errors caused by necessary simplifications. Even the most powerful AI- or physics-based forecast system suffer from gradual error accumulation. Data assimilation (DA) aims to mitigate these errors by optimally blending (noisy) observations with prior model forecasts, but conventional variational methods often assume Gaussian error statistics that fail to capture the true, non-Gaussian behavior of chaotic dynamical systems. We propose PnP-DA, a Plug-and-Play algorithm that alternates (1) a lightweight, gradient-based analysis update (using a Mahalanobis-distance misfit on new observations) with (2) a single forward pass through a pretrained generative prior conditioned on the background forecast via a conditional Wasserstein coupling. This strategy relaxes restrictive statistical assumptions and leverages rich historical data without requiring an explicit regularization functional, and it also avoids the need to backpropagate gradients through the complex neural network that encodes the prior during assimilation cycles. Experiments on standard chaotic testbeds demonstrate that this strategy consistently reduces forecast errors across a range of observation sparsities and noise levels, outperforming classical variational methods.
- Abstract(参考訳): 地球系のモデリングは、複雑なマルチスケールの非線形ダイナミクスを計算効率の良いモデルで捉えながら、必要な単純化によって生じる予測エラーを最小限に抑えるという、科学計算における根本的な課題を提示する。
最も強力なAIや物理ベースの予測システムでさえ、徐々にエラーが蓄積される。
データ同化(DA)は、従来のモデル予測と最適な(ノイズの多い)観測をブレンドすることでこれらの誤差を軽減することを目的としているが、従来の変分法では、カオス力学系の真の非ガウス的挙動を捉えないガウス的誤差統計をしばしば仮定する。
PnP-DAは,(1)軽量で勾配に基づく解析更新(Mahalanobis-distance misfit on new observed)と(2)条件付きワッサーシュタイン結合による背景予測に基づく事前条件付き生成前処理の1つの前方通過を交互に行う。
この戦略は制限的な統計的仮定を緩和し、明示的な正規化関数を必要とせず、豊富な履歴データを活用する。
標準的なカオステストベッドの実験では、この戦略は観測範囲や騒音レベルにわたって予測誤差を一貫して減少させ、古典的な変動法よりも優れていた。
関連論文リスト
- Interpretable Deep Regression Models with Interval-Censored Failure Time Data [1.2993568435938014]
間隔制限付きデータの深層学習手法は、まだ探索が過小評価されており、特定のデータタイプやモデルに限られている。
本研究は、部分線形変換モデルの幅広いクラスを持つ区間知覚データに対する一般的な回帰フレームワークを提案する。
我々の手法をアルツハイマー病神経イメージングイニシアチブデータセットに適用すると、従来のアプローチと比較して新しい洞察と予測性能が向上する。
論文 参考訳(メタデータ) (2025-03-25T15:27:32Z) - Topological Approach for Data Assimilation [0.4972323953932129]
トポロジカルデータ解析の基礎となる新しいデータ同化アルゴリズムを提案する。
パーシステンス関数の微分可能性を活用することにより、勾配勾配最適化は、測定と予測予測の間の位相的差を最小限に抑えるために用いられる。
論文 参考訳(メタデータ) (2024-11-12T20:24:46Z) - On conditional diffusion models for PDE simulations [53.01911265639582]
スパース観測の予測と同化のためのスコアベース拡散モデルについて検討した。
本稿では,予測性能を大幅に向上させる自動回帰サンプリング手法を提案する。
また,条件付きスコアベースモデルに対する新たなトレーニング戦略を提案する。
論文 参考訳(メタデータ) (2024-10-21T18:31:04Z) - Model-Based Reparameterization Policy Gradient Methods: Theory and
Practical Algorithms [88.74308282658133]
Reization (RP) Policy Gradient Methods (PGM) は、ロボット工学やコンピュータグラフィックスにおける連続的な制御タスクに広く採用されている。
近年の研究では、長期強化学習問題に適用した場合、モデルベースRP PGMはカオス的かつ非滑らかな最適化環境を経験する可能性があることが示されている。
本稿では,長期モデルアンロールによる爆発的分散問題を緩和するスペクトル正規化法を提案する。
論文 参考訳(メタデータ) (2023-10-30T18:43:21Z) - Exact nonlinear state estimation [0.0]
地質学におけるデータ同化法の大部分はガウスの仮定に基づいている。
非パラメトリックな粒子ベースDAアルゴリズムは精度が優れているが、高次元モデルへの応用は依然として運用上の課題となっている。
本稿では,DA手法の既存のギャップを埋めようとする新しい非線形推定理論を紹介する。
論文 参考訳(メタデータ) (2023-10-17T03:44:29Z) - Episodic Gaussian Process-Based Learning Control with Vanishing Tracking
Errors [10.627020714408445]
本稿では,任意の追跡精度を保証するために,GPモデル学習のためのエピソード手法を開発する。
導出理論の有効性はいくつかのシミュレーションで示されている。
論文 参考訳(メタデータ) (2023-07-10T08:43:28Z) - Koopman Kernel Regression [6.116741319526748]
クープマン作用素理論は線形時間不変(LTI)ODEによる予測のキャラクタリゼーションに有効なパラダイムであることを示す。
我々は、LTI力学系への変換のみにまたがる、普遍的なクープマン不変核再生ヒルベルト空間(RKHS)を導出する。
実験では、Koopman演算子やシーケンシャルデータ予測器と比較して予測性能が優れていることを示した。
論文 参考訳(メタデータ) (2023-05-25T16:22:22Z) - A Priori Denoising Strategies for Sparse Identification of Nonlinear
Dynamical Systems: A Comparative Study [68.8204255655161]
本研究では, 局所的およびグローバルな平滑化手法の性能と, 状態測定値の偏差について検討・比較する。
一般に,測度データセット全体を用いたグローバルな手法は,局所点の周辺に隣接するデータサブセットを用いる局所的手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2022-01-29T23:31:25Z) - Imputation-Free Learning from Incomplete Observations [73.15386629370111]
本稿では,不備な値を含む入力からの推論をインプットなしでトレーニングするIGSGD法の重要性について紹介する。
バックプロパゲーションによるモデルのトレーニングに使用する勾配の調整には強化学習(RL)を用いる。
我々の計算自由予測は、最先端の計算手法を用いて従来の2段階の計算自由予測よりも優れている。
論文 参考訳(メタデータ) (2021-07-05T12:44:39Z) - Stochastically forced ensemble dynamic mode decomposition for
forecasting and analysis of near-periodic systems [65.44033635330604]
本稿では,観測力学を強制線形系としてモデル化した新しい負荷予測手法を提案する。
固有線型力学の利用は、解釈可能性やパーシモニーの観点から、多くの望ましい性質を提供することを示す。
電力グリッドからの負荷データを用いたテストケースの結果が提示される。
論文 参考訳(メタデータ) (2020-10-08T20:25:52Z) - CASTLE: Regularization via Auxiliary Causal Graph Discovery [89.74800176981842]
因果構造学習(CASTLE)の正規化を導入し,変数間の因果関係を共同学習することでニューラルネットワークの正規化を提案する。
CASTLEは因果的隣り合いを持つ因果的DAGの特徴のみを効率的に再構成する一方、再構成ベース正規化器は全ての入力特徴を過度に再構成する。
論文 参考訳(メタデータ) (2020-09-28T09:49:38Z) - LSTM-based Anomaly Detection for Non-linear Dynamical System [11.797156206007612]
本稿では,Long Short-Term Memory (LSTM)に基づく非線形力学系における新しい異常検出手法を提案する。
まず、データ前処理、多段階予測、異常検出を含む非線形力学系におけるLSTMに基づく異常検出の枠組みについて述べる。
提案手法は,壁面せん断応力データセットにおいて従来の手法よりも高い精度で予測できる。
論文 参考訳(メタデータ) (2020-06-05T01:09:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。