論文の概要: Students' Reliance on AI in Higher Education: Identifying Contributing Factors
- arxiv url: http://arxiv.org/abs/2506.13845v1
- Date: Mon, 16 Jun 2025 17:55:26 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-18 17:34:59.188585
- Title: Students' Reliance on AI in Higher Education: Identifying Contributing Factors
- Title(参考訳): 高校生のAIへの信頼 : 貢献要因の特定
- Authors: Griffin Pitts, Neha Rani, Weedguet Mildort, Eva-Marie Cook,
- Abstract要約: 本研究では,大学生のAI依存パターンに寄与する潜在的な要因について検討した。
適切な依存は、学生の自己効力、プログラミングリテラシー、認知の必要性に大きく関係している。
信頼度は、タスク後の信頼度とAIアシスタントとの満足度に有意な相関を示した。
- 参考スコア(独自算出の注目度): 2.749898166276854
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The increasing availability and use of artificial intelligence (AI) tools in educational settings has raised concerns about students' overreliance on these technologies. Overreliance occurs when individuals accept incorrect AI-generated recommendations, often without critical evaluation, leading to flawed problem solutions and undermining learning outcomes. This study investigates potential factors contributing to patterns of AI reliance among undergraduate students, examining not only overreliance but also appropriate reliance (correctly accepting helpful and rejecting harmful recommendations) and underreliance (incorrectly rejecting helpful recommendations). Our approach combined pre- and post-surveys with a controlled experimental task where participants solved programming problems with an AI assistant that provided both accurate and deliberately incorrect suggestions, allowing direct observation of students' reliance patterns when faced with varying AI reliability. We find that appropriate reliance is significantly related to students' programming self-efficacy, programming literacy, and need for cognition, while showing negative correlations with post-task trust and satisfaction. Overreliance showed significant correlations with post-task trust and satisfaction with the AI assistant. Underreliance was negatively correlated with programming literacy, programming self-efficacy, and need for cognition. Overall, the findings provide insights for developing targeted interventions that promote appropriate reliance on AI tools, with implications for the integration of AI in curriculum and educational technologies.
- Abstract(参考訳): 教育環境における人工知能(AI)ツールの利用と利用の増加は、これらの技術への学生の過度な依存を懸念している。
過信は、個人が誤ったAI生成レコメンデーションを受け入れ、しばしば批判的な評価を受けずに、欠陥のある問題解決と学習結果を損なうときに起こる。
本研究は, 大学生のAI依存パターンに寄与する潜在的な要因について検討し, 過剰依存だけでなく, 適切な依存(有害な推奨を正しく受け入れ, 拒否する)と不適切な信頼(推奨を正しく拒否する)についても検討した。
提案手法は,事前調査と後調査を併用し,参加者がAIアシスタントを用いてプログラム問題を解き,正確かつ意図的に誤った提案を行い,AI信頼性に直面する学生の信頼パターンを直接観察する,制御された実験課題と組み合わせた。
学生の自己効力, プログラミングリテラシー, 認知の必要性と, タスク後の信頼と満足度との負の相関性を示しながら, 適切な信頼度は, 学生の自己効力, プログラミングリテラシー, 認知の必要性に大きく関係していることがわかった。
信頼度は、タスク後の信頼度とAIアシスタントとの満足度に有意な相関を示した。
アンダー信頼は、プログラミングのリテラシー、プログラミングの自己効力、認識の必要性と負の相関があった。
全体として、この発見はAIツールへの適切な依存を促進する目的の介入を開発するための洞察を与え、カリキュラムや教育技術におけるAIの統合に影響を及ぼす。
関連論文リスト
- The AI Imperative: Scaling High-Quality Peer Review in Machine Learning [49.87236114682497]
AIによるピアレビューは、緊急の研究とインフラの優先事項になるべきだ、と私たちは主張する。
我々は、事実検証の強化、レビュアーのパフォーマンスの指導、品質改善における著者の支援、意思決定におけるAC支援におけるAIの具体的な役割を提案する。
論文 参考訳(メタデータ) (2025-06-09T18:37:14Z) - Evaluating AI-Powered Learning Assistants in Engineering Higher Education: Student Engagement, Ethical Challenges, and Policy Implications [0.2812395851874055]
本研究では、AIを活用した学習フレームワークである教育AIハブを、大規模なR1公立大学の学部・環境工学コースで活用することを評価する。
学生たちは、AIアシスタントの利便性と快適さを高く評価し、AIツールの使用の容易さを報告している。
多くの学生はAIの使用を倫理的に許容できると見なしたが、制度的な政策や潜在的な学術的不正に対する理解について不確実性を示した。
論文 参考訳(メタデータ) (2025-06-06T03:02:49Z) - When Models Know More Than They Can Explain: Quantifying Knowledge Transfer in Human-AI Collaboration [79.69935257008467]
我々は,人間とAIの知識伝達能力に関する概念的かつ実験的フレームワークである知識統合と伝達評価(KITE)を紹介する。
最初の大規模人間実験(N=118)を行い,その測定を行った。
2段階のセットアップでは、まずAIを使って問題解決戦略を思いつき、その後独立してソリューションを実装し、モデル説明が人間の理解に与える影響を分離します。
論文 参考訳(メタデータ) (2025-06-05T20:48:16Z) - Interactive Agents to Overcome Ambiguity in Software Engineering [61.40183840499932]
AIエージェントは、あいまいで不明確なユーザー指示に基づいて、タスクを自動化するためにますますデプロイされている。
不安定な仮定をし、明確な質問をしないことは、最適以下の結果につながる可能性がある。
対話型コード生成設定において,LLMエージェントが不明瞭な命令を処理する能力について,プロプライエタリモデルとオープンウェイトモデルを評価して検討する。
論文 参考訳(メタデータ) (2025-02-18T17:12:26Z) - Analyzing the Impact of AI Tools on Student Study Habits and Academic Performance [0.0]
この研究は、AIツールがパーソナライズされた学習、適応テスト調整をサポートし、リアルタイムの教室分析を提供する方法に焦点を当てている。
学生のフィードバックはこれらの特徴に対する強い支持を示し、GPAの増加とともに研究時間を大幅に短縮した。
これらのメリットにもかかわらず、AIへの過度依存や、AIと従来の教育方法を統合することの難しさといった課題も特定された。
論文 参考訳(メタデータ) (2024-12-03T04:51:57Z) - To Err Is AI! Debugging as an Intervention to Facilitate Appropriate Reliance on AI Systems [11.690126756498223]
最適な人間とAIのコラボレーションのためのビジョンは、人間のAIシステムへの「適切な依存」を必要とする。
実際には、アウト・オブ・ディストリビューションデータにおける機械学習モデルの性能格差は、データセット固有のパフォーマンスフィードバックを信頼できないものにしている。
論文 参考訳(メタデータ) (2024-09-22T09:43:27Z) - The Rise of Artificial Intelligence in Educational Measurement: Opportunities and Ethical Challenges [2.569083526579529]
教育におけるAIは、妥当性、信頼性、透明性、公平性、公平性に関する倫理的な懸念を提起する。
教育者、政策立案者、組織を含む様々な利害関係者は、教育における倫理的AIの使用を保証するガイドラインを開発した。
本稿では,AIを活用したツールの教育測定における倫理的意義について検討する。
論文 参考訳(メタデータ) (2024-06-27T05:28:40Z) - Testing autonomous vehicles and AI: perspectives and challenges from cybersecurity, transparency, robustness and fairness [53.91018508439669]
この研究は、人工知能を自律走行車(AV)に統合する複雑さを探求する
AIコンポーネントがもたらした課題と、テスト手順への影響を調べます。
本稿は、重要な課題を特定し、AV技術におけるAIの研究・開発に向けた今後の方向性を提案する。
論文 参考訳(メタデータ) (2024-02-21T08:29:42Z) - Knowing About Knowing: An Illusion of Human Competence Can Hinder
Appropriate Reliance on AI Systems [13.484359389266864]
本稿では、Dunning-Kruger Effect(DKE)がAIシステムへの適切な依存を妨げているかどうかを論じる。
DKEは、能力の低い個人が自身のスキルやパフォーマンスを過大評価しているため、メタ認知バイアスである。
その結果、パフォーマンスを過大評価する参加者は、AIシステムへの信頼度が低い傾向にあることがわかった。
論文 参考訳(メタデータ) (2023-01-25T14:26:10Z) - Effect of Confidence and Explanation on Accuracy and Trust Calibration
in AI-Assisted Decision Making [53.62514158534574]
ケース固有のモデル情報を明らかにする特徴が、信頼度を調整し、人間とAIのジョイントパフォーマンスを向上させることができるかどうかを検討する。
信頼スコアは、AIモデルに対する人々の信頼を校正するのに役立ちますが、信頼の校正だけでは、AI支援による意思決定を改善するには不十分です。
論文 参考訳(メタデータ) (2020-01-07T15:33:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。