論文の概要: Evaluating AI-Powered Learning Assistants in Engineering Higher Education: Student Engagement, Ethical Challenges, and Policy Implications
- arxiv url: http://arxiv.org/abs/2506.05699v1
- Date: Fri, 06 Jun 2025 03:02:49 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-09 17:28:43.300465
- Title: Evaluating AI-Powered Learning Assistants in Engineering Higher Education: Student Engagement, Ethical Challenges, and Policy Implications
- Title(参考訳): 工学高等教育におけるAIを活用した学習アシスタントの評価--学生のエンゲージメント、倫理的挑戦、政策含意
- Authors: Ramteja Sajja, Yusuf Sermet, Brian Fodale, Ibrahim Demir,
- Abstract要約: 本研究では、AIを活用した学習フレームワークである教育AIハブを、大規模なR1公立大学の学部・環境工学コースで活用することを評価する。
学生たちは、AIアシスタントの利便性と快適さを高く評価し、AIツールの使用の容易さを報告している。
多くの学生はAIの使用を倫理的に許容できると見なしたが、制度的な政策や潜在的な学術的不正に対する理解について不確実性を示した。
- 参考スコア(独自算出の注目度): 0.2812395851874055
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As generative AI tools become increasingly integrated into higher education, understanding how students interact with and perceive these technologies is essential for responsible and effective adoption. This study evaluates the use of the Educational AI Hub, an AI-powered learning framework, in undergraduate civil and environmental engineering courses at a large R1 public university. Using a mixed-methods approach that combines pre- and post-surveys, system usage logs, and qualitative analysis of the open-ended prompts and questions students posed to the AI chatbot, the research explores students' perceptions of trust, ethical concerns, usability, and learning outcomes. Findings reveal that students appreciated the AI assistant for its convenience and comfort, with nearly half reporting greater ease in using the AI tool compared to seeking help from instructors or teaching assistants. The tool was seen as most helpful for completing homework and understanding course concepts, though perceptions of its instructional quality were mixed. Ethical concerns emerged as a key barrier to full engagement: while most students viewed AI use as ethically acceptable, many expressed uncertainties about institutional policies and apprehension about potential academic misconduct. This study contributes to the growing body of research on AI in education by highlighting the importance of usability, policy clarity, and faculty guidance in fostering meaningful AI engagement. The findings suggest that while students are ready to embrace AI as a supplement to human instruction, thoughtful integration and transparent institutional frameworks are critical for ensuring student confidence, trust, and learning effectiveness.
- Abstract(参考訳): 生成的AIツールが高等教育にますます統合されるにつれて、学生がこれらの技術とどのように相互作用し、知覚するかを理解することは、責任と効果的な採用に不可欠である。
本研究では、AIを活用した学習フレームワークである教育AIハブを、大規模なR1公立大学の学部・環境工学コースで活用することを評価する。
事前調査とポストサーベイ、システム利用ログ、AIチャットボットに提案されたオープンエンドプロンプトと質問の質的分析を組み合わせた混合メソッドアプローチを用いて、この研究は、学生が信頼、倫理的関心、ユーザビリティ、学習結果に対する認識を探索する。
学生たちはAIアシスタントの利便性と快適さを高く評価しており、インストラクターやアシスタントの助けを求めるよりも、AIツールの使用の容易さを報告している。
このツールは宿題を完了し、コースの概念を理解するのに最も役に立つと考えられていたが、教養の質の認識は混在していた。
多くの学生はAIの使用を倫理的に許容できると見なしたが、多くの学生は制度的な政策や潜在的な学術的不正に対する理解について不確実性を表明した。
本研究は、有意義なAIエンゲージメントを育成する上で、ユーザビリティ、政策明確性、教員指導の重要性を強調することによって、教育におけるAI研究の組織化に寄与する。
この結果は、学生がAIを人間の指導の補足として受け入れる準備が整っている一方で、思慮深い統合と透明な制度の枠組みは、学生の信頼、信頼、学習の有効性を保証するために重要であることを示唆している。
関連論文リスト
- Student Perspectives on the Benefits and Risks of AI in Education [0.49157446832511503]
近年,人工知能(AI)を用いたチャットボットの教育的利用が増加している。
これらの技術の採用は、学術的完全性、生徒が個別に問題解決する能力、潜在的なバイアスに影響を及ぼす懸念を提起している。
学生の視点や経験をよりよく理解するために,米国の大公立大学で調査を行った。
論文 参考訳(メタデータ) (2025-05-04T17:36:11Z) - Methodological Foundations for AI-Driven Survey Question Generation [41.94295877935867]
本稿では,ジェネレーティブAIを教育調査に活用するための方法論的枠組みを提案する。
大規模言語モデルが適応的でコンテキスト対応のサーベイ質問を生成する方法について検討する。
偏見、プライバシー、透明性などの倫理的問題を考察する。
論文 参考訳(メタデータ) (2025-05-02T09:50:34Z) - AI in Education: Rationale, Principles, and Instructional Implications [0.0]
ChatGPTのような生成AIは、人間のようなコンテンツを作り、その教育的役割について疑問を呈する。
この研究は、AIが真の認知的努力を補うのではなく、確実に補完する意図的な戦略を強調している。
論文 参考訳(メタデータ) (2024-12-02T14:08:07Z) - The Rise of Artificial Intelligence in Educational Measurement: Opportunities and Ethical Challenges [2.569083526579529]
教育におけるAIは、妥当性、信頼性、透明性、公平性、公平性に関する倫理的な懸念を提起する。
教育者、政策立案者、組織を含む様々な利害関係者は、教育における倫理的AIの使用を保証するガイドラインを開発した。
本稿では,AIを活用したツールの教育測定における倫理的意義について検討する。
論文 参考訳(メタデータ) (2024-06-27T05:28:40Z) - Toward enriched Cognitive Learning with XAI [44.99833362998488]
本稿では,人工知能(AI)ツールによる認知学習のためのインテリジェントシステム(CL-XAI)を提案する。
CL-XAIの使用は、学習者が問題解決スキルを高めるために問題に取り組むゲームインスパイアされた仮想ユースケースで説明される。
論文 参考訳(メタデータ) (2023-12-19T16:13:47Z) - Learning to Prompt in the Classroom to Understand AI Limits: A pilot
study [35.06607166918901]
大規模言語モデル(LLM)と、ChatGPTのような派生したチャットボットは、AIシステムの自然言語処理能力を大幅に改善した。
しかし、AI手法が顕著な貢献を示しているにもかかわらず、興奮は否定的な感情を引き起こしている。
パイロット教育は21人の生徒を抱えた高校で実施された。
論文 参考訳(メタデータ) (2023-07-04T07:51:37Z) - Assigning AI: Seven Approaches for Students, with Prompts [0.0]
本稿では,Large Language Models(LLM)の教育における転換的役割とその学習ツールとしての可能性について考察する。
AI-tutor、AI-coach、AI-mentor、AI-teammate、AI-tool、AI-simulator、AI-studentの7つのアプローチを提案する。
論文 参考訳(メタデータ) (2023-06-13T03:36:36Z) - AGI: Artificial General Intelligence for Education [41.45039606933712]
本稿では,人工知能(AGI)の重要な概念,能力,範囲,将来的な教育の可能性について概説する。
AGIは知的学習システム、教育評価、評価手順を大幅に改善することができる。
この論文は、AGIの能力が人間の感情や社会的相互作用を理解することに拡張されていることを強調している。
論文 参考訳(メタデータ) (2023-04-24T22:31:59Z) - Building Bridges: Generative Artworks to Explore AI Ethics [56.058588908294446]
近年,人工知能(AI)技術が社会に与える影響の理解と緩和に重点が置かれている。
倫理的AIシステムの設計における重要な課題は、AIパイプラインには複数の利害関係者があり、それぞれがそれぞれ独自の制約と関心を持っていることだ。
このポジションペーパーは、生成的アートワークが、アクセス可能で強力な教育ツールとして機能することで、この役割を果たすことができる可能性のいくつかを概説する。
論文 参考訳(メタデータ) (2021-06-25T22:31:55Z) - An interdisciplinary conceptual study of Artificial Intelligence (AI)
for helping benefit-risk assessment practices: Towards a comprehensive
qualification matrix of AI programs and devices (pre-print 2020) [55.41644538483948]
本稿では,インテリジェンスの概念に対処するさまざまな分野の既存の概念を包括的に分析する。
目的は、AIシステムを評価するための共有概念や相違点を特定することである。
論文 参考訳(メタデータ) (2021-05-07T12:01:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。