論文の概要: One Size Fits None: Rethinking Fairness in Medical AI
- arxiv url: http://arxiv.org/abs/2506.14400v1
- Date: Tue, 17 Jun 2025 10:59:02 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-18 17:34:59.436757
- Title: One Size Fits None: Rethinking Fairness in Medical AI
- Title(参考訳): 医療AIの公平さを再考する
- Authors: Roland Roller, Michael Hahn, Ajay Madhavan Ravichandran, Bilgin Osmanodja, Florian Oetke, Zeineb Sassi, Aljoscha Burchardt, Klaus Netter, Klemens Budde, Anne Herrmann, Tobias Strapatsas, Peter Dabrock, Sebastian Möller,
- Abstract要約: 現実の医療データセットは、しばしばうるさい、不完全、不均衡である。
差異はフェアネスの懸念を生じさせ、特にマージン化グループに対する既存の不利を補強する場合に顕著である。
- 参考スコア(独自算出の注目度): 7.163867603298375
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Machine learning (ML) models are increasingly used to support clinical decision-making. However, real-world medical datasets are often noisy, incomplete, and imbalanced, leading to performance disparities across patient subgroups. These differences raise fairness concerns, particularly when they reinforce existing disadvantages for marginalized groups. In this work, we analyze several medical prediction tasks and demonstrate how model performance varies with patient characteristics. While ML models may demonstrate good overall performance, we argue that subgroup-level evaluation is essential before integrating them into clinical workflows. By conducting a performance analysis at the subgroup level, differences can be clearly identified-allowing, on the one hand, for performance disparities to be considered in clinical practice, and on the other hand, for these insights to inform the responsible development of more effective models. Thereby, our work contributes to a practical discussion around the subgroup-sensitive development and deployment of medical ML models and the interconnectedness of fairness and transparency.
- Abstract(参考訳): 機械学習(ML)モデルは、臨床的な意思決定をサポートするためにますます使われている。
しかし、現実の医療データセットは、しばしばうるさい、不完全、不均衡であり、患者サブグループ間でのパフォーマンス格差をもたらす。
これらの違いは、特にマージン化グループに対する既存の不利を補強するときに、公平性に関する懸念を引き起こす。
本研究は,いくつかの医療予測タスクを分析し,患者特性とモデル性能の相違を実証する。
MLモデルは全体的な性能が良好である可能性があるが,臨床ワークフローに組み込むにはサブグループレベルの評価が不可欠である,と我々は主張する。
サブグループレベルでパフォーマンス分析を行うことにより、臨床実践においてパフォーマンス格差を考慮すべき点と、これらの知見がより効果的なモデルの開発に寄与するかどうかを明確化することができる。
そこで本研究は,医療MLモデルのサブグループ感性開発と展開,公平性と透明性の相互接続性に関する実践的な議論に寄与する。
関連論文リスト
- Inspecting Model Fairness in Ultrasound Segmentation Tasks [20.281029492841878]
2つの超音波データセットを用いて,一連の深層学習(DL)セグメンテーションモデルについて検討する。
以上の結果から,最先端のDLアルゴリズムでさえ,超音波セグメンテーション作業において不公平な動作を示すことが明らかとなった。
これらの結果は重要な警告として機能し、実際のシナリオに展開する前に、慎重にモデル評価を行う必要性を強調します。
論文 参考訳(メタデータ) (2023-12-05T05:08:08Z) - TREEMENT: Interpretable Patient-Trial Matching via Personalized Dynamic
Tree-Based Memory Network [54.332862955411656]
臨床試験は薬物開発に不可欠であるが、しばしば高価で非効率な患者募集に苦しむ。
近年,患者と臨床試験を自動マッチングすることで患者採用を高速化する機械学習モデルが提案されている。
本稿では,TREement という名前の動的ツリーベースメモリネットワークモデルを導入する。
論文 参考訳(メタデータ) (2023-07-19T12:35:09Z) - The Role of Subgroup Separability in Group-Fair Medical Image
Classification [18.29079361470428]
診断などの系統的バイアスを伴うデータを用いて, サブグループ分離性, サブグループ分離性, 性能劣化の関係について検討した。
私たちの発見は、モデルがどのように偏見を抱くかという問題に新たな光を当て、公正な医療画像AIの開発に重要な洞察を与えました。
論文 参考訳(メタデータ) (2023-07-06T06:06:47Z) - Auditing ICU Readmission Rates in an Clinical Database: An Analysis of
Risk Factors and Clinical Outcomes [0.0]
本研究では,30日間の読解問題における臨床データ分類のための機械学習パイプラインを提案する。
公正監査は、平等機会、予測パリティ、偽陽性率パリティ、偽陰性率パリティ基準の格差を明らかにする。
この研究は、人工知能(AI)システムのバイアスと公平性に対処するために、研究者、政策立案者、実践者の協力的努力の必要性を示唆している。
論文 参考訳(メタデータ) (2023-04-12T17:09:38Z) - Evaluating the Fairness of Deep Learning Uncertainty Estimates in
Medical Image Analysis [3.5536769591744557]
深層学習(DL)モデルは多くの医療画像解析タスクで大きな成功を収めている。
しかし、結果として得られたモデルを実際の臨床状況に展開するには、異なるサブ集団間での堅牢性と公平性が必要である。
近年の研究では、人口統計学的サブグループにまたがるDLモデルに有意なバイアスが見られ、モデルに公平性が欠如していることが示されている。
論文 参考訳(メタデータ) (2023-03-06T16:01:30Z) - Detecting Shortcut Learning for Fair Medical AI using Shortcut Testing [62.9062883851246]
機械学習は医療の改善に大いに貢献するが、その利用が健康格差を広めたり増幅したりしないことを確実にすることは重要である。
アルゴリズムの不公平性の潜在的な要因の1つ、ショートカット学習は、トレーニングデータにおける不適切な相関に基づいてMLモデルが予測した時に発生する。
マルチタスク学習を用いて,臨床MLシステムの公平性評価の一環として,ショートカット学習の評価と緩和を行う手法を提案する。
論文 参考訳(メタデータ) (2022-07-21T09:35:38Z) - Benchmarking Heterogeneous Treatment Effect Models through the Lens of
Interpretability [82.29775890542967]
治療のパーソナライズされた効果を見積もるのは複雑だが、普及している問題である。
ヘテロジニアス処理効果推定に関する機械学習文献の最近の進歩は、洗練されたが不透明なツールの多くを生み出した。
我々は、ポストホックな特徴重要度法を用いて、モデルの予測に影響を及ぼす特徴を特定する。
論文 参考訳(メタデータ) (2022-06-16T17:59:05Z) - What Do You See in this Patient? Behavioral Testing of Clinical NLP
Models [69.09570726777817]
本稿では,入力の変化に関する臨床結果モデルの振る舞いを評価する拡張可能なテストフレームワークを提案する。
私たちは、同じデータを微調整しても、モデル行動は劇的に変化し、最高のパフォーマンスのモデルが常に最も医学的に可能なパターンを学習していないことを示しています。
論文 参考訳(メタデータ) (2021-11-30T15:52:04Z) - Explaining medical AI performance disparities across sites with
confounder Shapley value analysis [8.785345834486057]
マルチサイト評価は、このような格差を診断する鍵となる。
本フレームワークは,各種類のバイアスが全体の性能差に与える影響を定量化する手法を提供する。
本研究は, 深部学習モデルを用いて気胸の有無を検知し, その有用性を実証するものである。
論文 参考訳(メタデータ) (2021-11-12T18:54:10Z) - Measuring Fairness Under Unawareness of Sensitive Attributes: A
Quantification-Based Approach [131.20444904674494]
センシティブな属性の無意識下でのグループフェアネスを測定する問題に取り組む。
定量化手法は, フェアネスと無意識の問題に対処するのに特に適していることを示す。
論文 参考訳(メタデータ) (2021-09-17T13:45:46Z) - Adversarial Sample Enhanced Domain Adaptation: A Case Study on
Predictive Modeling with Electronic Health Records [57.75125067744978]
ドメイン適応を容易にするデータ拡張手法を提案する。
逆生成したサンプルはドメイン適応時に使用される。
その結果,本手法の有効性とタスクの一般性が確認された。
論文 参考訳(メタデータ) (2021-01-13T03:20:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。