When Context Is Not Enough: Modeling Unexplained Variability in Car-Following Behavior
- URL: http://arxiv.org/abs/2507.07012v1
- Date: Wed, 09 Jul 2025 16:42:41 GMT
- Title: When Context Is Not Enough: Modeling Unexplained Variability in Car-Following Behavior
- Authors: Chengyuan Zhang, Zhengbing He, Cathy Wu, Lijun Sun,
- Abstract summary: Traditional deterministic models often fail to capture the full extent of variability and unpredictability in human driving.<n>This study introduces an interpretable modeling framework that captures not only context-dependent dynamics but also residual variability beyond what context can explain.<n>The integration of interpretability and accuracy makes this framework a promising tool for traffic analysis and safety-critical applications.
- Score: 22.102157707436884
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Modeling car-following behavior is fundamental to microscopic traffic simulation, yet traditional deterministic models often fail to capture the full extent of variability and unpredictability in human driving. While many modern approaches incorporate context-aware inputs (e.g., spacing, speed, relative speed), they frequently overlook structured stochasticity that arises from latent driver intentions, perception errors, and memory effects -- factors that are not directly observable from context alone. To fill the gap, this study introduces an interpretable stochastic modeling framework that captures not only context-dependent dynamics but also residual variability beyond what context can explain. Leveraging deep neural networks integrated with nonstationary Gaussian processes (GPs), our model employs a scenario-adaptive Gibbs kernel to learn dynamic temporal correlations in acceleration decisions, where the strength and duration of correlations between acceleration decisions evolve with the driving context. This formulation enables a principled, data-driven quantification of uncertainty in acceleration, speed, and spacing, grounded in both observable context and latent behavioral variability. Comprehensive experiments on the naturalistic vehicle trajectory dataset collected from the German highway, i.e., the HighD dataset, demonstrate that the proposed stochastic simulation method within this framework surpasses conventional methods in both predictive performance and interpretable uncertainty quantification. The integration of interpretability and accuracy makes this framework a promising tool for traffic analysis and safety-critical applications.
Related papers
- Markov Regime-Switching Intelligent Driver Model for Interpretable Car-Following Behavior [19.229274803939983]
We introduce a regime-switching framework that allows driving behavior to be governed by different IDM parameter sets.<n>We instantiate the framework using a Factorial Hidden Markov Model with IDM dynamics.
arXiv Detail & Related papers (2025-06-17T17:55:42Z) - A Driving Regime-Embedded Deep Learning Framework for Modeling Intra-Driver Heterogeneity in Multi-Scale Car-Following Dynamics [5.579243411257874]
We propose a novel data-driven car-following framework that embeds discrete driving regimes into vehicular motion predictions.<n>The proposed hybrid deep learning architecture combines Gated Recurrent Units for discrete driving regime classification with Long Short-Term Memory networks for continuous kinematic prediction.<n>The framework significantly reduces prediction errors for acceleration (maximum MSE improvement reached 58.47%), speed, and spacing metrics while reproducing critical traffic phenomena.
arXiv Detail & Related papers (2025-06-06T09:19:33Z) - Certified Neural Approximations of Nonlinear Dynamics [52.79163248326912]
In safety-critical contexts, the use of neural approximations requires formal bounds on their closeness to the underlying system.<n>We propose a novel, adaptive, and parallelizable verification method based on certified first-order models.
arXiv Detail & Related papers (2025-05-21T13:22:20Z) - Beyond Patterns: Harnessing Causal Logic for Autonomous Driving Trajectory Prediction [10.21659221112514]
We introduce a novel trajectory prediction framework that leverages causal inference to enhance predictive robustness, generalization, and accuracy.<n>Our findings highlight the potential of causal reasoning to transform trajectory prediction, paving the way for robust autonomous driving systems.
arXiv Detail & Related papers (2025-05-11T05:56:07Z) - FollowGen: A Scaled Noise Conditional Diffusion Model for Car-Following Trajectory Prediction [9.2729178775419]
This study introduces a scaled noise conditional diffusion model for car-following trajectory prediction.
It integrates detailed inter-vehicular interactions and car-following dynamics into a generative framework, improving the accuracy and plausibility of predicted trajectories.
Experimental results on diverse real-world driving scenarios demonstrate the state-of-the-art performance and robustness of the proposed method.
arXiv Detail & Related papers (2024-11-23T23:13:45Z) - Physics-guided Active Sample Reweighting for Urban Flow Prediction [75.24539704456791]
Urban flow prediction is a nuanced-temporal modeling that estimates the throughput of transportation services like buses, taxis and ride-driven models.
Some recent prediction solutions bring remedies with the notion of physics-guided machine learning (PGML)
We develop a atized physics-guided network (PN), and propose a data-aware framework Physics-guided Active Sample Reweighting (P-GASR)
arXiv Detail & Related papers (2024-07-18T15:44:23Z) - On the Identification of Temporally Causal Representation with Instantaneous Dependence [50.14432597910128]
Temporally causal representation learning aims to identify the latent causal process from time series observations.
Most methods require the assumption that the latent causal processes do not have instantaneous relations.
We propose an textbfIDentification framework for instantanetextbfOus textbfLatent dynamics.
arXiv Detail & Related papers (2024-05-24T08:08:05Z) - Towards Generalizable and Interpretable Motion Prediction: A Deep
Variational Bayes Approach [54.429396802848224]
This paper proposes an interpretable generative model for motion prediction with robust generalizability to out-of-distribution cases.
For interpretability, the model achieves the target-driven motion prediction by estimating the spatial distribution of long-term destinations.
Experiments on motion prediction datasets validate that the fitted model can be interpretable and generalizable.
arXiv Detail & Related papers (2024-03-10T04:16:04Z) - Kinematics-aware Trajectory Generation and Prediction with Latent Stochastic Differential Modeling [12.338614299403305]
Trajectory generation and trajectory prediction are critical tasks in autonomous driving.
Deep learning-based methods have shown great promise for these two tasks in learning various traffic scenarios.
However, it remains a challenging problem for these methods to ensure that the generated/predicted trajectories are physically realistic.
arXiv Detail & Related papers (2023-09-17T16:06:38Z) - Uncovering the Missing Pattern: Unified Framework Towards Trajectory
Imputation and Prediction [60.60223171143206]
Trajectory prediction is a crucial undertaking in understanding entity movement or human behavior from observed sequences.
Current methods often assume that the observed sequences are complete while ignoring the potential for missing values.
This paper presents a unified framework, the Graph-based Conditional Variational Recurrent Neural Network (GC-VRNN), which can perform trajectory imputation and prediction simultaneously.
arXiv Detail & Related papers (2023-03-28T14:27:27Z) - Towards better traffic volume estimation: Jointly addressing the
underdetermination and nonequilibrium problems with correlation-adaptive GNNs [47.18837782862979]
This paper studies two key problems with regard to traffic volume estimation: (1) underdetermined traffic flows caused by undetected movements, and (2) non-equilibrium traffic flows arise from congestion propagation.
We demonstrate a graph-based deep learning method that can offer a data-driven, model-free and correlation adaptive approach to tackle the above issues.
arXiv Detail & Related papers (2023-03-10T02:22:33Z) - Benchmark for Models Predicting Human Behavior in Gap Acceptance
Scenarios [4.801975818473341]
We develop a framework facilitating the evaluation of any model, by any metric, and in any scenario.
We then apply this framework to state-of-the-art prediction models, which all show themselves to be unreliable in the most safety-critical situations.
arXiv Detail & Related papers (2022-11-10T09:59:38Z) - Congestion-aware Multi-agent Trajectory Prediction for Collision
Avoidance [110.63037190641414]
We propose to learn congestion patterns explicitly and devise a novel "Sense--Learn--Reason--Predict" framework.
By decomposing the learning phases into two stages, a "student" can learn contextual cues from a "teacher" while generating collision-free trajectories.
In experiments, we demonstrate that the proposed model is able to generate collision-free trajectory predictions in a synthetic dataset.
arXiv Detail & Related papers (2021-03-26T02:42:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.