Notes on detection and measurement of quantum coherence
- URL: http://arxiv.org/abs/2506.15080v1
- Date: Wed, 18 Jun 2025 02:46:45 GMT
- Title: Notes on detection and measurement of quantum coherence
- Authors: Yiding Wang, Tinggui Zhang,
- Abstract summary: We give some methods to detect and measure quantum coherence.<n>Coherence is believed to play a crucial role in quantum information tasks.<n>These results help to open up new avenues for advancement in quantum theory.
- Score: 0.4297070083645049
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum coherence is one of the most basic characteristics of quantum mechanics. Here we give some methods to detect and measure quantum coherence. Firstly, we propose a coherence criterion without full quantum state tomography based on partial transposition. Moreover, we present a coherent nonlinear detection strategy from witnesses, in which we find that for some coherent states, normal witness detection fails but our nonlinear detection succeeds. In addition, we prove that when the nonlinear detection on the two copies of the coherent state fails, the nonlinear detection on the three copies may be successful. Finally, due to the difficulty in calculating robustness of coherence for general states, we introduce a lower bound for coherent robustness based on the witness operator, and after comparing our lower bound with the currently known lower bound, one show that our lower bound is better. Coherence is believed to play a crucial role in quantum information tasks, making the detection and quantization of coherence particularly significant. Therefore, these results help to open up new avenues for advancement in quantum theory.
Related papers
- Experimental Test of Nonlocality Limits from Relativistic Independence [0.0]
We show the existence of a fundamental limit on the extent of quantum correlations.<n>Our results shed light on the profound role of uncertainty in both enabling and balancing them.
arXiv Detail & Related papers (2025-01-10T23:29:00Z) - Robust self-testing of the $m-$partite maximally entangled state and observables [0.0]
We propose a simple and efficient self-testing protocol that certifies the state and observables based on the optimal quantum violation of the Svetlichny inequality.
Our method leverages an elegant sum-of-squares approach to derive the optimal quantum value of the Svetlichny functional, devoid of assuming the dimension of the quantum system.
arXiv Detail & Related papers (2024-08-20T11:03:37Z) - Detection of mode-intrinsic quantum entanglement [0.0]
We propose a witness to detect a strong form of entanglement that only non-Gaussian states possess.
The strength of our witness is two-fold: it only requires measurements in one basis to check entanglement in any arbitrary mode basis.
arXiv Detail & Related papers (2024-07-25T15:01:47Z) - Effect of the readout efficiency of quantum measurement on the system entanglement [44.99833362998488]
We quantify the entanglement for a particle on a 1d quantum random walk under inefficient monitoring.
We find that the system's maximal mean entanglement at the measurement-induced quantum-to-classical crossover is in different ways by the measurement strength and inefficiency.
arXiv Detail & Related papers (2024-02-29T18:10:05Z) - Enhanced Entanglement in the Measurement-Altered Quantum Ising Chain [43.80709028066351]
Local quantum measurements do not simply disentangle degrees of freedom, but may actually strengthen the entanglement in the system.<n>This paper explores how a finite density of local measurement modifies a given state's entanglement structure.
arXiv Detail & Related papers (2023-10-04T09:51:00Z) - Quantification of Entanglement and Coherence with Purity Detection [16.01598003770752]
Entanglement and coherence are fundamental properties of quantum systems, promising to power near future quantum technologies.
Here, we demonstrate quantitative bounds to operationally useful entanglement and coherence.
Our research offers an efficient means of verifying large-scale quantum information processing.
arXiv Detail & Related papers (2023-08-14T11:03:40Z) - Quantum Discord Witness With Uncharacterized Devices [22.915199593638874]
We propose a new approach using uncharacterized measurements to witness quantum discord of an unknown bipartite state within arbitrary dimension system.<n>Our method exhibits high robustness against device imperfections, such as error tolerance, indicating its experimental feasibility.
arXiv Detail & Related papers (2023-03-20T14:51:53Z) - Improved Quantum Algorithms for Fidelity Estimation [77.34726150561087]
We develop new and efficient quantum algorithms for fidelity estimation with provable performance guarantees.
Our algorithms use advanced quantum linear algebra techniques, such as the quantum singular value transformation.
We prove that fidelity estimation to any non-trivial constant additive accuracy is hard in general.
arXiv Detail & Related papers (2022-03-30T02:02:16Z) - Efficient Bipartite Entanglement Detection Scheme with a Quantum
Adversarial Solver [89.80359585967642]
Proposal reformulates the bipartite entanglement detection as a two-player zero-sum game completed by parameterized quantum circuits.
We experimentally implement our protocol on a linear optical network and exhibit its effectiveness to accomplish the bipartite entanglement detection for 5-qubit quantum pure states and 2-qubit quantum mixed states.
arXiv Detail & Related papers (2022-03-15T09:46:45Z) - Interactive Protocols for Classically-Verifiable Quantum Advantage [46.093185827838035]
"Interactions" between a prover and a verifier can bridge the gap between verifiability and implementation.
We demonstrate the first implementation of an interactive quantum advantage protocol, using an ion trap quantum computer.
arXiv Detail & Related papers (2021-12-09T19:00:00Z) - Experimental violations of Leggett-Garg's inequalities on a quantum
computer [77.34726150561087]
We experimentally observe the violations of Leggett-Garg-Bell's inequalities on single and multi-qubit systems.
Our analysis highlights the limits of nowadays quantum platforms, showing that the above-mentioned correlation functions deviate from theoretical prediction as the number of qubits and the depth of the circuit grow.
arXiv Detail & Related papers (2021-09-06T14:35:15Z) - Incoherent witnessing of quantum coherence [0.0]
We analyze the general procedure for coherence detection in quantum systems.
We show the counterintuitive phenomenon of detecting a quantum system's initial coherence when both the input and output probe states are completely incoherent.
arXiv Detail & Related papers (2021-08-06T12:42:28Z) - Entropic Uncertainty Relations and the Quantum-to-Classical transition [77.34726150561087]
We aim to shed some light on the quantum-to-classical transition as seen through the analysis of uncertainty relations.
We employ entropic uncertainty relations to show that it is only by the inclusion of imprecision in our model of macroscopic measurements that we can prepare a system with two simultaneously well-defined quantities.
arXiv Detail & Related papers (2020-03-04T14:01:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.