論文の概要: J3DAI: A tiny DNN-Based Edge AI Accelerator for 3D-Stacked CMOS Image Sensor
- arxiv url: http://arxiv.org/abs/2506.15316v1
- Date: Wed, 18 Jun 2025 09:46:02 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-19 19:35:51.62594
- Title: J3DAI: A tiny DNN-Based Edge AI Accelerator for 3D-Stacked CMOS Image Sensor
- Title(参考訳): J3DAI:3D重ね型CMOSイメージセンサのための小型DNNベースのエッジAI加速器
- Authors: Benoit Tain, Raphael Millet, Romain Lemaire, Michal Szczepanski, Laurent Alacoque, Emmanuel Pluchart, Sylvain Choisnet, Rohit Prasad, Jerome Chossat, Pascal Pierunek, Pascal Vivet, Sebastien Thuries,
- Abstract要約: 本稿では,3層CMOSイメージセンサのための,ニューラルネットワークをベースとした小型ハードウェアアクセラレータJ3DAIを提案する。
ハードウェアをサポートするために、ホストプロセッサとDNNアクセラレータの両方のプログラミングを可能にするAidge包括的ソフトウェアフレームワークを利用した。
- 参考スコア(独自算出の注目度): 0.7437459197111806
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This paper presents J3DAI, a tiny deep neural network-based hardware accelerator for a 3-layer 3D-stacked CMOS image sensor featuring an artificial intelligence (AI) chip integrating a Deep Neural Network (DNN)-based accelerator. The DNN accelerator is designed to efficiently perform neural network tasks such as image classification and segmentation. This paper focuses on the digital system of J3DAI, highlighting its Performance-Power-Area (PPA) characteristics and showcasing advanced edge AI capabilities on a CMOS image sensor. To support hardware, we utilized the Aidge comprehensive software framework, which enables the programming of both the host processor and the DNN accelerator. Aidge supports post-training quantization, significantly reducing memory footprint and computational complexity, making it crucial for deploying models on resource-constrained hardware like J3DAI. Our experimental results demonstrate the versatility and efficiency of this innovative design in the field of edge AI, showcasing its potential to handle both simple and computationally intensive tasks. Future work will focus on further optimizing the architecture and exploring new applications to fully leverage the capabilities of J3DAI. As edge AI continues to grow in importance, innovations like J3DAI will play a crucial role in enabling real-time, low-latency, and energy-efficient AI processing at the edge.
- Abstract(参考訳): 本稿では,Deep Neural Network(DNN)ベースのアクセラレータを組み込んだ人工知能(AI)チップを備えた3層CMOSイメージセンサのための,小さなディープニューラルネットワークベースのハードウェアアクセラレータであるJ3DAIを提案する。
DNNアクセラレータは、画像分類やセグメンテーションなどのニューラルネットワークタスクを効率的に実行するように設計されている。
本稿では、J3DAIのデジタルシステムに焦点を当て、そのPPA特性を強調し、CMOSイメージセンサに高度なエッジAI機能を示す。
ハードウェアをサポートするために、ホストプロセッサとDNNアクセラレータの両方のプログラミングを可能にするAidge包括的ソフトウェアフレームワークを利用した。
Aidgeはトレーニング後の量子化をサポートし、メモリフットプリントと計算の複雑さを大幅に減らし、J3DAIのようなリソース制約のあるハードウェアにモデルをデプロイする上で極めて重要である。
我々の実験結果は、エッジAIの分野におけるこの革新的な設計の汎用性と効率を実証し、単純かつ計算集約的なタスクを処理できる可能性を示している。
今後の作業は、アーキテクチャのさらなる最適化と、J3DAIの機能を完全に活用するための新しいアプリケーションを探求することに集中する。
エッジAIの重要性が高まり続ける中、J3DAIのようなイノベーションは、エッジにおけるリアルタイム、低レイテンシ、エネルギー効率のAI処理を実現する上で重要な役割を果たす。
関連論文リスト
- Efficient and accurate neural field reconstruction using resistive memory [52.68088466453264]
デジタルコンピュータにおける従来の信号再構成手法は、ソフトウェアとハードウェアの両方の課題に直面している。
本稿では,スパース入力からの信号再構成のためのソフトウェア・ハードウェア協調最適化を用いた体系的アプローチを提案する。
この研究は、AI駆動の信号復元技術を進歩させ、将来の効率的で堅牢な医療AIと3Dビジョンアプリケーションへの道を開く。
論文 参考訳(メタデータ) (2024-04-15T09:33:09Z) - TeMPO: Efficient Time-Multiplexed Dynamic Photonic Tensor Core for Edge
AI with Compact Slow-Light Electro-Optic Modulator [44.74560543672329]
我々は,TMPOと呼ばれる時間多重化動的フォトニックテンソルアクセラレータを,クロス層デバイス/回路/アーキテクチャのカスタマイズにより提案する。
我々は,368.6TOPSピーク性能,22.3TOPS/Wエネルギー効率,1.2TOPS/mm$2$計算密度を実現した。
この研究は、多層共設計とドメイン固有のカスタマイズの力を示し、将来の電子フォトニクス加速器への道を開く。
論文 参考訳(メタデータ) (2024-02-12T03:40:32Z) - Random resistive memory-based deep extreme point learning machine for
unified visual processing [67.51600474104171]
ハードウェア・ソフトウェア共同設計型, ランダム抵抗型メモリベース深部極点学習マシン(DEPLM)を提案する。
我々の共同設計システムは,従来のシステムと比較して,エネルギー効率の大幅な向上とトレーニングコストの削減を実現している。
論文 参考訳(メタデータ) (2023-12-14T09:46:16Z) - Green Edge AI: A Contemporary Survey [46.11332733210337]
AIの変換力は、ディープニューラルネットワーク(DNN)の利用から導かれる。
ディープラーニング(DL)は、エンドユーザーデバイス(EUD)に近い無線エッジネットワークに移行しつつある。
その可能性にもかかわらず、エッジAIは大きな課題に直面している。主な原因は、無線エッジネットワークのリソース制限と、DLのリソース集約的な性質の分離である。
論文 参考訳(メタデータ) (2023-12-01T04:04:37Z) - Fast GraspNeXt: A Fast Self-Attention Neural Network Architecture for
Multi-task Learning in Computer Vision Tasks for Robotic Grasping on the Edge [80.88063189896718]
アーキテクチャと計算の複雑さが高いと、組み込みデバイスへのデプロイに適さない。
Fast GraspNeXtは、ロボットグルーピングのためのコンピュータビジョンタスクに埋め込まれたマルチタスク学習に適した、高速な自己認識型ニューラルネットワークアーキテクチャである。
論文 参考訳(メタデータ) (2023-04-21T18:07:14Z) - Deep Learning for Real Time Satellite Pose Estimation on Low Power Edge
TPU [58.720142291102135]
本稿では,ニューラルネットワークアーキテクチャを利用したポーズ推定ソフトウェアを提案する。
我々は、低消費電力の機械学習アクセラレーターが宇宙での人工知能の活用を可能にしていることを示す。
論文 参考訳(メタデータ) (2022-04-07T08:53:18Z) - FPGA-optimized Hardware acceleration for Spiking Neural Networks [69.49429223251178]
本研究は,画像認識タスクに適用したオフライントレーニングによるSNN用ハードウェアアクセラレータの開発について述べる。
この設計はXilinx Artix-7 FPGAをターゲットにしており、利用可能なハードウェアリソースの40%を合計で使用している。
分類時間を3桁に短縮し、ソフトウェアと比較すると精度にわずか4.5%の影響を与えている。
論文 参考訳(メタデータ) (2022-01-18T13:59:22Z) - Silicon photonic subspace neural chip for hardware-efficient deep
learning [11.374005508708995]
光ニューラルネットワーク(ONN)は次世代のニューロコンピューティングの候補として期待されている。
ハードウェア効率の良いフォトニックサブスペースニューラルネットワークアーキテクチャを考案する。
我々は,バタフライ型プログラマブルシリコンフォトニック集積回路上でPSNNを実験的に実証した。
論文 参考訳(メタデータ) (2021-11-11T06:34:05Z) - L2ight: Enabling On-Chip Learning for Optical Neural Networks via
Efficient in-situ Subspace Optimization [10.005026783940682]
シリコンフォトニクスベースの光ニューラルネットワーク(ONN)は、効率的なAIのパラダイムシフトを示す可能性のある、有望なハードウェアプラットフォームである。
そこで本研究では,スケーラブルなONNマッピングと効率的なin-situ学習を実現するための,閉ループONNオンチップ学習フレームワークL2ightを提案する。
論文 参考訳(メタデータ) (2021-10-27T22:53:47Z) - 3U-EdgeAI: Ultra-Low Memory Training, Ultra-Low BitwidthQuantization,
and Ultra-Low Latency Acceleration [8.419854797930668]
エッジ上のディープニューラルネットワーク(DNN)ベースのAIアプリケーションは、低コストのコンピューティングプラットフォームと高品質なサービスの両方を必要とする。
本稿では、トレーニング、量子化、加速器設計の重要性を強調し、エッジ上のAI分野におけるさらなる研究のブレークスルーを求める。
論文 参考訳(メタデータ) (2021-05-11T03:22:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。