AgentGroupChat-V2: Divide-and-Conquer Is What LLM-Based Multi-Agent System Need
- URL: http://arxiv.org/abs/2506.15451v1
- Date: Wed, 18 Jun 2025 13:24:04 GMT
- Title: AgentGroupChat-V2: Divide-and-Conquer Is What LLM-Based Multi-Agent System Need
- Authors: Zhouhong Gu, Xiaoxuan Zhu, Yin Cai, Hao Shen, Xingzhou Chen, Qingyi Wang, Jialin Li, Xiaoran Shi, Haoran Guo, Wenxuan Huang, Hongwei Feng, Yanghua Xiao, Zheyu Ye, Yao Hu, Shaosheng Cao,
- Abstract summary: Large language model based multi-agent systems have demonstrated significant potential in social simulation and complex task resolution domains.<n>We introduce AgentGroupChat-V2, a novel framework addressing these challenges through three core innovations.<n>Experiments demonstrate AgentGroupChat-V2's superior performance across diverse domains.
- Score: 35.88121318813734
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language model based multi-agent systems have demonstrated significant potential in social simulation and complex task resolution domains. However, current frameworks face critical challenges in system architecture design, cross-domain generalizability, and performance guarantees, particularly as task complexity and number of agents increases. We introduces AgentGroupChat-V2, a novel framework addressing these challenges through three core innovations: (1) a divide-and-conquer fully parallel architecture that decomposes user queries into hierarchical task forest structures enabling dependency management and distributed concurrent processing. (2) an adaptive collaboration engine that dynamically selects heterogeneous LLM combinations and interaction modes based on task characteristics. (3) agent organization optimization strategies combining divide-and-conquer approaches for efficient problem decomposition. Extensive experiments demonstrate AgentGroupChat-V2's superior performance across diverse domains, achieving 91.50% accuracy on GSM8K (exceeding the best baseline by 5.6 percentage points), 30.4% accuracy on competition-level AIME (nearly doubling other methods), and 79.20% pass@1 on HumanEval. Performance advantages become increasingly pronounced with higher task difficulty, particularly on Level 5 MATH problems where improvements exceed 11 percentage points compared to state-of-the-art baselines. These results confirm that AgentGroupChat-V2 provides a comprehensive solution for building efficient, general-purpose LLM multi-agent systems with significant advantages in complex reasoning scenarios. Code is available at https://github.com/MikeGu721/AgentGroupChat-V2.
Related papers
- Visual Document Understanding and Question Answering: A Multi-Agent Collaboration Framework with Test-Time Scaling [83.78874399606379]
We propose MACT, a Multi-Agent Collaboration framework with Test-Time scaling.<n>It comprises four distinct small-scale agents, with clearly defined roles and effective collaboration.<n>It shows superior performance with a smaller parameter scale without sacrificing the ability of general and mathematical tasks.
arXiv Detail & Related papers (2025-08-05T12:52:09Z) - Parallelism Meets Adaptiveness: Scalable Documents Understanding in Multi-Agent LLM Systems [0.8437187555622164]
Large language model (LLM) agents have shown increasing promise for collaborative task completion.<n>Existing multi-agent frameworks often rely on static, fixed roles, and limited inter-agent communication.<n>This paper proposes a coordination framework that enables adaptiveness through three core mechanisms.
arXiv Detail & Related papers (2025-07-22T22:42:51Z) - CodeAgents: A Token-Efficient Framework for Codified Multi-Agent Reasoning in LLMs [16.234259194402163]
We introduce CodeAgents, a prompting framework that codifies multi-agent reasoning and enables structured, token-efficient planning in multi-agent systems.<n>Results show consistent improvements in planning performance, with absolute gains of 3-36 percentage points over natural language prompting baselines.
arXiv Detail & Related papers (2025-07-04T02:20:19Z) - Adaptive Graph Pruning for Multi-Agent Communication [14.18447472314079]
Large Language Model (LLM) based multi-agent systems have shown remarkable performance in various tasks.<n>We propose Adaptive Graph Pruning (AGP), a novel task-adaptive multi-agent collaboration framework.
arXiv Detail & Related papers (2025-06-03T14:46:00Z) - Multi-Agent Collaboration via Evolving Orchestration [61.93162413517026]
Large language models (LLMs) have achieved remarkable results across diverse downstream tasks, but their monolithic nature restricts scalability and efficiency in complex problem-solving.<n>We propose a puppeteer-style paradigm for LLM-based multi-agent collaboration, where a central orchestrator dynamically directs agents in response to evolving task states.<n> Experiments on closed- and open-domain scenarios show that this method achieves superior performance with reduced computational costs.
arXiv Detail & Related papers (2025-05-26T07:02:17Z) - Two Heads are Better Than One: Test-time Scaling of Multi-agent Collaborative Reasoning [29.580108004844856]
Multi-agent systems (MAS) built on large language models (LLMs) offer a promising path toward solving complex, real-world tasks.<n>Recent advancements in test-time scaling (TTS) have significantly improved single-agent performance on challenging reasoning tasks.<n>We introduce an adaptive multi-agent framework designed to enhance collaborative reasoning through both model-level training and system-level coordination.
arXiv Detail & Related papers (2025-04-14T00:27:45Z) - OmniNova:A General Multimodal Agent Framework [0.5439020425819]
Large Language Models (LLMs) with specialized tools presents new opportunities for intelligent automation systems.<n>We present OmniNova, a modular multi-agent automation framework that combines language models with specialized tools such as web search, crawling, and code execution capabilities.
arXiv Detail & Related papers (2025-03-25T19:21:01Z) - Why Do Multi-Agent LLM Systems Fail? [91.39266556855513]
We present MAST (Multi-Agent System Failure taxonomy), the first empirically grounded taxonomy designed to understand MAS failures.<n>We analyze seven popular MAS frameworks across over 200 tasks, involving six expert human annotators.<n>We identify 14 unique failure modes, organized into 3 overarching categories, (i) specification issues, (ii) inter-agent misalignment, and (iii) task verification.
arXiv Detail & Related papers (2025-03-17T19:04:38Z) - Agent-Oriented Planning in Multi-Agent Systems [54.429028104022066]
We propose AOP, a novel framework for agent-oriented planning in multi-agent systems.<n>In this study, we identify three critical design principles of agent-oriented planning, including solvability, completeness, and non-redundancy.<n> Extensive experiments demonstrate the advancement of AOP in solving real-world problems compared to both single-agent systems and existing planning strategies for multi-agent systems.
arXiv Detail & Related papers (2024-10-03T04:07:51Z) - Textualized Agent-Style Reasoning for Complex Tasks by Multiple Round LLM Generation [49.27250832754313]
We present AgentCOT, a llm-based autonomous agent framework.
At each step, AgentCOT selects an action and executes it to yield an intermediate result with supporting evidence.
We introduce two new strategies to enhance the performance of AgentCOT.
arXiv Detail & Related papers (2024-09-19T02:20:06Z) - EvoAgent: Towards Automatic Multi-Agent Generation via Evolutionary Algorithms [55.77492625524141]
EvoAgent is a generic method to automatically extend specialized agents to multi-agent systems.<n>We show that EvoAgent can significantly enhance the task-solving capability of LLM-based agents.
arXiv Detail & Related papers (2024-06-20T11:49:23Z) - Smurfs: Multi-Agent System using Context-Efficient DFSDT for Tool Planning [14.635361844362794]
"Smurfs" is a novel multi-agent system that enhances DFSDT with a modular, context-efficient, and training-free design.<n>Smurfs surpasses baseline methods in both the open-ended StableToolBench and the closed-ended HotpotQA tasks.
arXiv Detail & Related papers (2024-05-09T17:49:04Z) - Agents meet OKR: An Object and Key Results Driven Agent System with
Hierarchical Self-Collaboration and Self-Evaluation [25.308341461293857]
OKR-Agent is designed to enhance the capabilities of Large Language Models (LLMs) in task-solving.
Our framework includes two novel modules: hierarchical Objects and Key Results generation and multi-level evaluation.
arXiv Detail & Related papers (2023-11-28T06:16:30Z) - A Dynamic LLM-Powered Agent Network for Task-Oriented Agent Collaboration [55.35849138235116]
We propose automatically selecting a team of agents from candidates to collaborate in a dynamic communication structure toward different tasks and domains.
Specifically, we build a framework named Dynamic LLM-Powered Agent Network ($textDyLAN$) for LLM-powered agent collaboration.
We demonstrate that DyLAN outperforms strong baselines in code generation, decision-making, general reasoning, and arithmetic reasoning tasks with moderate computational cost.
arXiv Detail & Related papers (2023-10-03T16:05:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.