Task-Agnostic Experts Composition for Continual Learning
- URL: http://arxiv.org/abs/2506.15566v1
- Date: Wed, 18 Jun 2025 15:43:08 GMT
- Title: Task-Agnostic Experts Composition for Continual Learning
- Authors: Luigi Quarantiello, Andrea Cossu, Vincenzo Lomonaco,
- Abstract summary: We propose a compositional approach by ensembling zero-shot a set of expert models.<n>We show that our Expert Composition method is able to achieve a much higher accuracy than baseline algorithms.
- Score: 8.10981559903269
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Compositionality is one of the fundamental abilities of the human reasoning process, that allows to decompose a complex problem into simpler elements. Such property is crucial also for neural networks, especially when aiming for a more efficient and sustainable AI framework. We propose a compositional approach by ensembling zero-shot a set of expert models, assessing our methodology using a challenging benchmark, designed to test compositionality capabilities. We show that our Expert Composition method is able to achieve a much higher accuracy than baseline algorithms while requiring less computational resources, hence being more efficient.
Related papers
- Sparse Mixture-of-Experts for Compositional Generalization: Empirical Evidence and Theoretical Foundations of Optimal Sparsity [89.81738321188391]
This study investigates the relationship between task complexity and optimal sparsity in SMoE models.<n>We show that the optimal sparsity lies between minimal activation (1-2 experts) and full activation, with the exact number scaling proportionally to task complexity.
arXiv Detail & Related papers (2024-10-17T18:40:48Z) - A Human-Centered Approach for Improving Supervised Learning [0.44378250612683995]
This paper shows how we can strike a balance between performance, time, and resource constraints.
Another goal of this research is to make Ensembles more explainable and intelligible using the Human-Centered approach.
arXiv Detail & Related papers (2024-10-14T10:27:14Z) - Component-based Sketching for Deep ReLU Nets [55.404661149594375]
We develop a sketching scheme based on deep net components for various tasks.
We transform deep net training into a linear empirical risk minimization problem.
We show that the proposed component-based sketching provides almost optimal rates in approximating saturated functions.
arXiv Detail & Related papers (2024-09-21T15:30:43Z) - Efficient Model-Free Exploration in Low-Rank MDPs [76.87340323826945]
Low-Rank Markov Decision Processes offer a simple, yet expressive framework for RL with function approximation.
Existing algorithms are either (1) computationally intractable, or (2) reliant upon restrictive statistical assumptions.
We propose the first provably sample-efficient algorithm for exploration in Low-Rank MDPs.
arXiv Detail & Related papers (2023-07-08T15:41:48Z) - Neural Algorithmic Reasoning for Combinatorial Optimisation [20.36694807847833]
We propose leveraging recent advancements in neural reasoning to improve the learning of CO problems.
We suggest pre-training our neural model on relevant algorithms before training it on CO instances.
Our results demonstrate that by using this learning setup, we achieve superior performance compared to non-algorithmically informed deep learning models.
arXiv Detail & Related papers (2023-05-18T13:59:02Z) - Divide & Conquer Imitation Learning [75.31752559017978]
Imitation Learning can be a powerful approach to bootstrap the learning process.
We present a novel algorithm designed to imitate complex robotic tasks from the states of an expert trajectory.
We show that our method imitates a non-holonomic navigation task and scales to a complex simulated robotic manipulation task with very high sample efficiency.
arXiv Detail & Related papers (2022-04-15T09:56:50Z) - Human-Algorithm Collaboration: Achieving Complementarity and Avoiding
Unfairness [92.26039686430204]
We show that even in carefully-designed systems, complementary performance can be elusive.
First, we provide a theoretical framework for modeling simple human-algorithm systems.
Next, we use this model to prove conditions where complementarity is impossible.
arXiv Detail & Related papers (2022-02-17T18:44:41Z) - What Makes Good Contrastive Learning on Small-Scale Wearable-based
Tasks? [59.51457877578138]
We study contrastive learning on the wearable-based activity recognition task.
This paper presents an open-source PyTorch library textttCL-HAR, which can serve as a practical tool for researchers.
arXiv Detail & Related papers (2022-02-12T06:10:15Z) - A Simple and Efficient Sampling-based Algorithm for General Reachability
Analysis [32.488975902387395]
General-purpose reachability analysis remains a notoriously challenging problem with applications ranging from neural network verification to safety analysis of dynamical systems.
By sampling inputs, evaluating their images in the true reachable set, and taking their $epsilon$-padded convex hull as a set estimator, this algorithm applies to general problem settings and is simple to implement.
This analysis informs algorithmic design to obtain an $epsilon$-close reachable set approximation with high probability.
On a neural network verification task, we show that this approach is more accurate and significantly faster than prior work.
arXiv Detail & Related papers (2021-12-10T18:56:16Z) - Complex Skill Acquisition Through Simple Skill Imitation Learning [0.0]
We propose a new algorithm that trains neural network policies on simple, easy-to-learn skills.
We focus on the case in which the complex task comprises a concurrent (and possibly sequential) combination of the simpler subtasks.
Our algorithm consistently outperforms a state-of-the-art baseline in training speed and overall performance.
arXiv Detail & Related papers (2020-07-20T17:06:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.