MoiréXNet: Adaptive Multi-Scale Demoiréing with Linear Attention Test-Time Training and Truncated Flow Matching Prior
- URL: http://arxiv.org/abs/2506.15929v1
- Date: Thu, 19 Jun 2025 00:15:07 GMT
- Title: MoiréXNet: Adaptive Multi-Scale Demoiréing with Linear Attention Test-Time Training and Truncated Flow Matching Prior
- Authors: Liangyan Li, Yimo Ning, Kevin Le, Wei Dong, Yunzhe Li, Jun Chen, Xiaohong Liu,
- Abstract summary: This paper introduces a novel framework for image and video demoir'eing by integrating A Posteriori (MAP) estimation with advanced deep learning techniques.
- Score: 11.753823187605033
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper introduces a novel framework for image and video demoir\'eing by integrating Maximum A Posteriori (MAP) estimation with advanced deep learning techniques. Demoir\'eing addresses inherently nonlinear degradation processes, which pose significant challenges for existing methods. Traditional supervised learning approaches either fail to remove moir\'e patterns completely or produce overly smooth results. This stems from constrained model capacity and scarce training data, which inadequately represent the clean image distribution and hinder accurate reconstruction of ground-truth images. While generative models excel in image restoration for linear degradations, they struggle with nonlinear cases such as demoir\'eing and often introduce artifacts. To address these limitations, we propose a hybrid MAP-based framework that integrates two complementary components. The first is a supervised learning model enhanced with efficient linear attention Test-Time Training (TTT) modules, which directly learn nonlinear mappings for RAW-to-sRGB demoir\'eing. The second is a Truncated Flow Matching Prior (TFMP) that further refines the outputs by aligning them with the clean image distribution, effectively restoring high-frequency details and suppressing artifacts. These two components combine the computational efficiency of linear attention with the refinement abilities of generative models, resulting in improved restoration performance.
Related papers
- Learning Deblurring Texture Prior from Unpaired Data with Diffusion Model [92.61216319417208]
We propose a novel diffusion model (DM)-based framework, dubbed ours, for image deblurring.<n>ours performs DM to generate the prior knowledge that aids in recovering the textures of blurry images.<n>To fully exploit the generated texture priors, we present the Texture Transfer Transformer layer (TTformer)
arXiv Detail & Related papers (2025-07-18T01:50:31Z) - One Diffusion Step to Real-World Super-Resolution via Flow Trajectory Distillation [60.54811860967658]
FluxSR is a novel one-step diffusion Real-ISR based on flow matching models.<n>First, we introduce Flow Trajectory Distillation (FTD) to distill a multi-step flow matching model into a one-step Real-ISR.<n>Second, to improve image realism and address high-frequency artifact issues in generated images, we propose TV-LPIPS as a perceptual loss.
arXiv Detail & Related papers (2025-02-04T04:11:29Z) - Boosting Alignment for Post-Unlearning Text-to-Image Generative Models [55.82190434534429]
Large-scale generative models have shown impressive image-generation capabilities, propelled by massive data.<n>This often inadvertently leads to the generation of harmful or inappropriate content and raises copyright concerns.<n>We propose a framework that seeks an optimal model update at each unlearning iteration, ensuring monotonic improvement on both objectives.
arXiv Detail & Related papers (2024-12-09T21:36:10Z) - Steering Rectified Flow Models in the Vector Field for Controlled Image Generation [53.965218831845995]
Diffusion models (DMs) excel in photorealism, image editing, and solving inverse problems, aided by classifier-free guidance and image inversion techniques.<n>Existing DM-based methods often require additional training, lack generalization to pretrained latent models, underperform, and demand significant computational resources due to extensive backpropagation through ODE solvers and inversion processes.<n>We propose FlowChef, which leverages the vector field to steer the denoising trajectory for controlled image generation tasks, facilitated by gradient skipping.<n>FlowChef significantly outperforms baselines in terms of performance, memory, and time requirements, achieving new state-of-the
arXiv Detail & Related papers (2024-11-27T19:04:40Z) - Model Integrity when Unlearning with T2I Diffusion Models [11.321968363411145]
We propose approximate Machine Unlearning algorithms to reduce the generation of specific types of images, characterized by samples from a forget distribution''
We then propose unlearning algorithms that demonstrate superior effectiveness in preserving model integrity compared to existing baselines.
arXiv Detail & Related papers (2024-11-04T13:15:28Z) - LinFusion: 1 GPU, 1 Minute, 16K Image [71.44735417472043]
We introduce a low-rank approximation of a wide spectrum of popular linear token mixers.
We find that the distilled model, termed LinFusion, achieves performance on par with or superior to the original SD.
Experiments on SD-v1.5, SD-v2.1, and SD-XL demonstrate that LinFusion enables satisfactory and efficient zero-shot cross-resolution generation.
arXiv Detail & Related papers (2024-09-03T17:54:39Z) - Minusformer: Improving Time Series Forecasting by Progressively Learning Residuals [14.741951369068877]
We find that ubiquitous time series (TS) forecasting models are prone to severe overfitting.
We introduce a dual-stream and subtraction mechanism, which is a deep Boosting ensemble learning method.
The proposed method outperform existing state-of-the-art methods, yielding an average performance improvement of 11.9% across various datasets.
arXiv Detail & Related papers (2024-02-04T03:54:31Z) - Learning from Mistakes: Iterative Prompt Relabeling for Text-to-Image Diffusion Model Training [33.51524424536508]
Iterative Prompt Relabeling (IPR) is a novel algorithm that aligns images to text through iterative image sampling and prompt relabeling with feedback.<n>We conduct thorough experiments on SDv2 and SDXL, testing their capability to follow instructions on spatial relations.
arXiv Detail & Related papers (2023-12-23T11:10:43Z) - BOOT: Data-free Distillation of Denoising Diffusion Models with
Bootstrapping [64.54271680071373]
Diffusion models have demonstrated excellent potential for generating diverse images.
Knowledge distillation has been recently proposed as a remedy that can reduce the number of inference steps to one or a few.
We present a novel technique called BOOT, that overcomes limitations with an efficient data-free distillation algorithm.
arXiv Detail & Related papers (2023-06-08T20:30:55Z) - Multiscale Structure Guided Diffusion for Image Deblurring [24.09642909404091]
Diffusion Probabilistic Models (DPMs) have been employed for image deblurring.
We introduce a simple yet effective multiscale structure guidance as an implicit bias.
We demonstrate more robust deblurring results with fewer artifacts on unseen data.
arXiv Detail & Related papers (2022-12-04T10:40:35Z) - A Two-step-training Deep Learning Framework for Real-time Computational
Imaging without Physics Priors [0.0]
We propose a two-step-training DL (TST-DL) framework for real-time computational imaging without physics priors.
First, a single fully-connected layer (FCL) is trained to directly learn the model.
Then, this FCL is fixed and fixed with an un-trained U-Net architecture for a second-step training to improve the output image fidelity.
arXiv Detail & Related papers (2020-01-10T15:05:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.