論文の概要: CF-Seg: Counterfactuals meet Segmentation
- arxiv url: http://arxiv.org/abs/2506.16213v1
- Date: Thu, 19 Jun 2025 11:01:33 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-23 19:00:05.038052
- Title: CF-Seg: Counterfactuals meet Segmentation
- Title(参考訳): CF-Seg: カウンターファクトがセグメンテーションに到達
- Authors: Raghav Mehta, Fabio De Sousa Ribeiro, Tian Xia, Melanie Roschewitz, Ainkaran Santhirasekaram, Dominic C. Marshall, Ben Glocker,
- Abstract要約: 医学画像における解剖学的構造は,様々な疾患の定量的評価において重要な役割を担っている。
病気のパターンは、周囲の健康な組織の外観を変えたり、曖昧な境界、または明確な解剖学的構造を導入したりすることができる。
そこで本研究では,病状変化を伴わずに同じ解剖像が出現する様子をシミュレーションするために,CF画像を生成する。
- 参考スコア(独自算出の注目度): 15.886397919997538
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Segmenting anatomical structures in medical images plays an important role in the quantitative assessment of various diseases. However, accurate segmentation becomes significantly more challenging in the presence of disease. Disease patterns can alter the appearance of surrounding healthy tissues, introduce ambiguous boundaries, or even obscure critical anatomical structures. As such, segmentation models trained on real-world datasets may struggle to provide good anatomical segmentation, leading to potential misdiagnosis. In this paper, we generate counterfactual (CF) images to simulate how the same anatomy would appear in the absence of disease without altering the underlying structure. We then use these CF images to segment structures of interest, without requiring any changes to the underlying segmentation model. Our experiments on two real-world clinical chest X-ray datasets show that the use of counterfactual images improves anatomical segmentation, thereby aiding downstream clinical decision-making.
- Abstract(参考訳): 医学画像における解剖学的構造は,様々な疾患の定量的評価において重要な役割を担っている。
しかし、病気の存在下では、正確なセグメンテーションが著しく困難になる。
病気のパターンは、周囲の健康な組織の外観を変えたり、あいまいな境界を導入したり、重要な解剖学的構造を曖昧にしたりすることができる。
そのため、現実世界のデータセットでトレーニングされたセグメンテーションモデルは、優れた解剖学的セグメンテーションの提供に苦慮し、潜在的な誤診につながる可能性がある。
そこで本研究では,病状変化を伴わずに同じ解剖像が出現する様子をシミュレーションするために,CF画像を生成する。
次に、これらのCF画像を用いて、基礎となるセグメンテーションモデルを変更することなく、興味のある構造をセグメント化する。
2つの実世界臨床胸部X線データセットを用いた実験により, 反ファクト画像の使用により解剖学的セグメンテーションが改善し, 下流臨床の意思決定を支援することが示された。
関連論文リスト
- A Continual Learning-driven Model for Accurate and Generalizable Segmentation of Clinically Comprehensive and Fine-grained Whole-body Anatomies in CT [67.34586036959793]
完全に注釈付きCTデータセットは存在せず、すべての解剖学がトレーニングのために記述されている。
完全解剖を分割できる連続学習駆動CTモデルを提案する。
単体CT分割モデルCL-Netは, 臨床的に包括的に包括的に235個の粒状体解剖の集合を高精度に分割することができる。
論文 参考訳(メタデータ) (2025-03-16T23:55:02Z) - Structure-Aware Stylized Image Synthesis for Robust Medical Image Segmentation [10.776242801237862]
本稿では,拡散モデルと構造保存ネットワークを組み合わせた新しい医用画像分割手法を提案する。
本手法は, 病変の位置, サイズ, 形状を維持しつつ, 様々なソースからの画像を一貫したスタイルに変換することで, 領域シフトを効果的に軽減する。
論文 参考訳(メタデータ) (2024-12-05T16:15:32Z) - Advancing Medical Image Segmentation: Morphology-Driven Learning with Diffusion Transformer [4.672688418357066]
本稿では,雑音の存在下での頑健なセグメンテーションのためのトランスフォーマー拡散(DTS)モデルを提案する。
画像の形態的表現を解析する本モデルでは, 種々の医用画像モダリティにおいて, 従来のモデルよりも良好な結果が得られた。
論文 参考訳(メタデータ) (2024-08-01T07:35:54Z) - Anatomy-guided Pathology Segmentation [56.883822515800205]
本研究では, 解剖学的特徴と病理学的情報を組み合わせた汎用的セグメンテーションモデルを構築し, 病理学的特徴のセグメンテーション精度を高めることを目的とする。
我々の解剖学・病理学交流(APEx)訓練では,ヒト解剖学の問合せ表現に結合特徴空間をデコードする問合せベースのセグメンテーション変換器を用いている。
これにより、FDG-PET-CTとChest X-Rayの病理分類タスクにおいて、強力なベースライン法に比べて最大3.3%のマージンで、ボード全体で最高の結果を報告できる。
論文 参考訳(メタデータ) (2024-07-08T11:44:15Z) - Towards Automated Semantic Segmentation in Mammography Images [0.0]
乳頭, 胸部筋, 線維腺組織, 脂肪組織を, 標準乳房造影画像で区分けするための深層学習ベースの枠組みを提案する。
論文 参考訳(メタデータ) (2023-07-18T15:04:42Z) - Region-based Contrastive Pretraining for Medical Image Retrieval with
Anatomic Query [56.54255735943497]
医用画像検索のための地域別コントラスト事前トレーニング(RegionMIR)
医用画像検索のための領域ベースコントラスト事前トレーニング(RegionMIR)について紹介する。
論文 参考訳(メタデータ) (2023-05-09T16:46:33Z) - SQUID: Deep Feature In-Painting for Unsupervised Anomaly Detection [76.01333073259677]
無線画像からの異常検出のための空間認識型メモリキューを提案する(略してSQUID)。
SQUIDは, 微細な解剖学的構造を逐次パターンに分類でき, 推測では画像中の異常(見えない/修正されたパターン)を識別できる。
論文 参考訳(メタデータ) (2021-11-26T13:47:34Z) - Cross Chest Graph for Disease Diagnosis with Structural Relational
Reasoning [2.7148274921314615]
X線画像のコンピュータ診断において位置病変は重要である。
一般に弱教師付き手法はX線像の特性を考慮できなかった。
自動病変検出の性能を向上させるCross-chest Graph (CCG)を提案する。
論文 参考訳(メタデータ) (2021-01-22T08:24:04Z) - Co-Heterogeneous and Adaptive Segmentation from Multi-Source and
Multi-Phase CT Imaging Data: A Study on Pathological Liver and Lesion
Segmentation [48.504790189796836]
我々は,新しいセグメンテーション戦略,コヘテロジネティック・アダプティブセグメンテーション(CHASe)を提案する。
本稿では,外見に基づく半スーパービジョン,マスクに基づく対向ドメイン適応,擬似ラベルを融合した多目的フレームワークを提案する。
CHASeは4.2% sim 9.4%$の範囲で、病理的な肝臓マスクDice-Sorensen係数をさらに改善することができる。
論文 参考訳(メタデータ) (2020-05-27T06:58:39Z) - Weakly supervised multiple instance learning histopathological tumor
segmentation [51.085268272912415]
スライド画像全体のセグメント化のための弱教師付きフレームワークを提案する。
トレーニングモデルに複数のインスタンス学習スキームを利用する。
提案するフレームワークは,The Cancer Genome AtlasとPatchCamelyonデータセットのマルチロケーションとマルチ中心公開データに基づいて評価されている。
論文 参考訳(メタデータ) (2020-04-10T13:12:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。